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Discrete linear repetitive processes

e Let o < 0o denote the (constant) pass length
e let0>p>a—1 bea point on each pass k£, £k > 0

o et

— x;(p) € R™ - state vector

— yr(p) € R™ - output vector

— u(p) € R - input vector

— d; € R"™ - vector with constant entries

— y(p) € R™ - vector, whose entries are known functions of p



State space model of linear repetitive process

trr(p+1) = Axpi(p) + Burri(p) + Boye(p)
Ur+1(p) = Czpr1(p) + Dupsa(p) + Doyr(p)

where A, B, By, C, D, Dy are matrices of appropriate
dimensions: R™*", R/ RW>m Rmxn grxE RMXM resnectively
initial conditions:
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Static boundary conditions

X,¥Y

X5(0)=d,(0)




Dynamic boundary conditions

X,y
X5(0)=d5(0)+1(y4(p))

X1(0)=d1(0)+(y{p))




illustration

Linear repetitive processes




Linear repetitive processes — state
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Linear repetitive processes — output
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Applications

e Coal mining
e Web forming
e Metal rolling

e lterative learning control



Coal mining
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Coal mining — details
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Web forming process
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Rectification process of multiplicity mixtures in
multiplate columns

l

Final product
X(Zt) y(it) (steam component)

A

Raw materials
{u, u} '

P Final product
Liquid Steiam (liquid component)

|

{x(i,t),y(i,t)} — unknown concentration of liquid and steam
components of substance at :-th plate

v
—>




Rectification process of multiplicity mixtures in
multiplate columns — cont.

0 = Lo (D2 + 1,8) + Lilt)a(i +1,¢)
+Ri(x (i, ), y(i,t)) + us(i, t)
WD = Vi (t)y(i — 1,t) + Vit)y(i + 1,t)

—Ri(2(,1),y(i,1)) + uy(i, 1)
L.V, R are given hydrodynamic background

For details see: Demidenko N.D.:

Simulation and optimization of heat and mass transfer process in chemical

engineering , Moscow, Nauka, 1991, (in Russian)



Metal rolling

® ;1 previous thickness of metal strip

e ;. current thickness of metal strip
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Metal rolling — details
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Metal rolling — model

Trr1(p+1) = Azppi(p) + Bur+1(p) + Boyr(p)
Yk+1(p) = Czpp1(p) + Dugyi1(p) + Doyr(p)

ug(p) = Fu(p) i
ze(p) = |yre =D yr(p —2) yr1(p — 1) ye—1(p — 2)]
a; as Q4 as b a3
1 0 0 O 0 0
0 0 0 0} 0| " 1|’
0O 0 1 0 0 0
C:[al s Q4 a5:,D:b, Dy = as.




Metal rolling — continued

where
2M —M p) T2+M
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Metal rolling — notation

e y;_1(t) and yi(t) — thickness of the metal on the current and previous
pass respectively,

e VM — lumped mass of the roll-gap adjusting mechanism,
e )\; — the stiffness of the adjustment mechanism spring,

e )y — the hardness of the metal strip,

o )\ = )\/1332 the composite stiffness of the metal strip and the roll
mechanism,

e F/(t) — the force developed by the motor,

e ' — sampling period.



Iterative learning control
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Control aim:

y(p) —y(p)) <e p=1,2,...,N

lterative control rule:

u(p, k+ 1) =u(p, k) + Au(p, k)

(1)



2D case

(1) may be rewritten as

Ax(p, k) + Bu(p, k)
C'z(p)

r(0,k) = 29 k = 0,1,...
u(p,0) = 0 p = 1,2,...,N
Control rule is said to be convergent iff

r(p+1,k)
y(p)

y(pak)ﬁyr(p), pE{l,,N}, k — oo.



Control error

| et:
e(p, k) = y-(p) —y(p, k).
Then

e(p,k+1) —e(p, k) = —CAn(p, k) — CBAu(p — 1,k)

where
n(p, k)=z(p —1,k+1) —z(p — 1, k).



Towards 2D model



Final 2D model

leads to
n(p+1,k) _{ ,,,,,,,,,,, A BK }
e(p,k+1) —CA I - CBK

convergence condition (asymptotic stability)

r(I —CBK) <1



where

ILC — continuous case

(2)



Continuous case 2D approach

Aim of control

sup |y(t) —y(t)| <e, 0 <t <T
0<t<T

(2) is modelled as

— Ax(t, k) + Bu(t, k)
y(t, k) = Cx(t, k

N—"

where k iIs the 1teration number



Continuous case 2D approach — continued

Learning rule

u(t,k+1) = wu(t,k) + Au(t, k)
I

input modification

Initial conditions

x(0,k) = x, k= 0,1,2,...
u(t, 0) uo(t), 0<t<T



Learning rule

Let:
e(t, k) = y.(t) —y(t, k)

n(t, k) = jmt k+4+1)—x(t, k)] dt.



Learning rule Il

Then, one may show that
t
= An(t,k) + B / Au(T, k)dr
0

on(t, k)
Ot

and

e(t.k+1) — e(t. k) = —CAn(t.k) — CB / Au(r, k)dr

0



Learning rule Il

Assume that y,.(t) is differentiable

(t, k)

Oe
A = K




The continuous - discrete Roesser model

(k)
ng : ) _{ ,,,,,,,,,,, 4, Bc%zc} {n(t, k)}
e(t,k+1) - - e(t, k)
where
77(0,]{) — 07 k:O,l,
t
e(t,0) = y,(t) = Cetlwy — [ Cel"T Buy(1)dr
0

convergence condition (asymptotic stability)

r(I —CBK) < 1



