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[. Feedback Control Design by Partial Eigenvalue As-
signment.

Controlling Resonance in
Structures

|

|
Feedback Control

!

!

Quadratic Partial Eigenvalue
Assignment Problem (QPEVAP)




[1. Finite Element Model Updating Problem (FEMUP).

Updating Theoretical FEM Using
Measured Data from Real-Life
Structure

FEMUP Structure preserving

QPESAP




e Distributed Parameter Systems Model (DPS)

Distributed Parameter Systems:
0*v(t, ) ov(t,x)
ot? ot
M,C, and K are differential operators in the z-

domain (spatial domain) of the displacement function
v(t, ).

M (x) + C(x) + K(z)v(t,z) = 0.

v(t, ) belongs to some Hilbert space.

M = Mass operator (Self Ajoint)

K = Stiffness operator (Self Ajoint)
C=D+G

D = Damping operator

G = Gyroscopic operator (Skew Symmetric)




/PStrag wherepop(1)[[0(BD)1 0J](2)[[1(BI)1 0]](3)[[2(B1)1 0]}(4)[[3(BI)1 0J](5)[[4(BI)1 0]](6)[[5(BI

Figure: CONTROL DESIGN AND IMPLEMENTATION
IN A VIBRATING STRUCTURE
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Examples of Resonance

Dangerous vibrations such as resonance are caused by
a few bad eigenvalues.

Classical Examples of Resonance:

e The Fall of the Tacoma Bridge
e The Fall of the Broughton Bridge in England

e Wobbling of the Millennium Bridge over the River
Thames in London, England

(www.arup.com/Millenniumbridge)



Phenomenon of Resonance

e The Discretized Finite Element Model
Mi(t)+ Dx(t) + Kz(t) = 0.

e The Associated Quadratic Matrix Eigenvalue
Problem:

(MM + XD+ K)x = 0.

e The dynamics are governed by

Natural Frequencies — Eigenvalues of the QEP.
Mode Shapes = Eigenvectors of the QEP.



Response of a Structure due
to Harmonic Input

j= V1)

e f(t) = External Force = f, e/*!

e Oscillatory Solution z(t) = z(t)e/*!

o (K + jwD — w*M)xelt = f el

o v = (K +jwD —w*M)'f, (Response).

As

Jw — Aj

|| P(jw) | increases without bound.

e Resonance is caused by closed proximity of an external
frequency to that of a natural frequency:.



How to Avoid Resonance?

e Feedback Control can be used

Idea: Replace {computed Unwanted eigenvalues}
— {suitably chosen ones}

and
Leave the remaining large number unchanged.

(No spill-over)



Feedback Control in Second-order Model

A possible Remedy: Apply a suitable control force
to the structure. Use the technique of feedback control.

Matrix Second-order Model with Control
Mi(t) + Dx(t) + Kx(t) = Bu(t)

Choose u(t) = Fla(t) + Fhx(t).
Then the closed-loop system is

Mi(t) + Di(t) + Ka(t) = B(Fia(t) + Foa(t)

Mi(t)+ (D — BFy)z(t) + (K — BFy)z(t) = 0.

The associated matrix quadratic pencil is:

P.(\) =N*M + XD — BF))+ (K — BF,) = 0.

This pencil is called the closed-loop pencil.
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Notations

e The spectrum of the quadratic pencil:

Q(P()\)) = {)\1, ...,)\p; )‘p+17 ...,)\Qn}

e The right eigenvectors of the:

{1, ..y 2y Tpia, ey Ton }
e The left eigenvectors of the pencil:

{y1, - YUpi Yps1 - - Yon -
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Quadratic Partial Eigenvalue Assignment
Problem (QPEVAP)

Given

(i) The system matrices M, K, D, € R™"(M = M! >
0, K=K!>0and D= D").

(ii) A control matrix B € R"*"™
(iii) A set of computed unwanted eigenvalues { Ay, ..., A, }.

(iv) A set of user’s chosen eigenvalues {1, ..., f, }.

Find the Feedback Matrices F} and F5 such that
Q(PC<>\)> — {:uh oo oy >‘p—}—17 SR >\2n}

D Ak — {pt1s e )
{)\p_|_1, ceey )\271} — {)\p+17 ceey >\2n}
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Stabilizing a Second-order System

e Solution of the QPEVA problem can be used to sta-
bilize a matrix second-order system by feedback.

(A Special Case)
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Two Standard Approaches for Control

e Solution via transformation to a first-order State-
Space Form

e Independent Modal Space Control (IMSC)
Approach.

Both these approaches have severe computational
difficulties and engineering limitations.
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Standard First-order Reduction

Recall the second-order feedback control system
Mi(t)+ (D — BFy)x(t) + (K — BFy)x(t) = 0.

e Reduction to Standard First-order State-space Form:
. 0 I 0
Q(t> — ( _M—lK _M—lD ) Q<t)+( M—lB ) u(t)

Difficulties

e [ll-conditioned matrix inversion might be necessary.

e All important structures such as sparsity, definite-
ness and bandness etc. are lost.

e Problem size becomes double.

Opportunities

e Many numerically excellent methods can be used
(Numerical Methods for Linear Control Sys-
tems Design and Analysis, by B.N. Datta)
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Non-standard first-order reduction:

(_OK ]\04)2@): (_OK :g>z<t)+<%)u(t)

E3(t) = Az(t) + Bu(t) (Descriptor System)

or

e Numerical methods for descriptor systems not well-
developed (E could be singular or very ill-conditioned)

e A is symmetric but not positive definite even if
M, K, and D are.
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Approach 11
Independent Space Control (IMSC)
Approach.

(For Open-loop Decoupling)

e Requires complete knowledge of the spectrum and
eigenvectors of the open-loop pencil

P(A\) = MM +\D+ K.
Impractical for large and sparse problems

(For closed-loop Decoupling)

BKM™'D =DM 'BK

BKM 'K = KM 'BK

e Stringent requirements need to be satisfied on actu-
ators and sensors which are impossible to satisfy in
practice.

Ref: Vibration with Control, Measurement, and
Stability by D. Inman, Prentice Hall, 1989.
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Challenges

e Use a small number of eigenvalues and eigen-
vectors that can be computed or measured.

e No transformation to a first-order system.

e No reduction of the order of the model or the
order of the controllers.

e Mathematical guarantee needed for the no spill-
over property.
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The Current Engineering Practice and
Drawbacks

e Compute and control the first few frequencies and
mode shapes (eigenvalues and eigenvectors).

e Hope that the large number of remaining eigenvalues
and eigenvectors do not chan ge or do not spill-over
to dangerous regions.

e Unfortunately, the spill-over almost always
occurs.

¢ No mathematical basis

19



Recent Direct and Partial-Modal Approach
for Feedback Control

(Collaborative work with Eric Chu, Sylvan Elhay,
Yitshak Ram, Daniil Sarkissian, W.W. Lin,
J.N. Wang, and others)

e Direct - No transformation required.

e Partial-Modal - Only knowledge of a small number
of eigenvectors needed for implementation.

e [ixtension to the Robust Partial Eigenvalue As-
signment. (Sensitivity minimization by minimiza-
tion of the eigenvector condition number and feed-
back normly)

A New Approach for the Quadratic Partial
Eigenvalue Assignment Problem

e T'wo-part solution

Part I. No spill-over part (with a parametric
matrix).

Part II. Partial Eigenvalue Assignment Part.
(with a special choice of the parametric matrix)
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Notations

Define Ay = diag (Ag,..., Ap)

le <y17y27"'7yp>
Ng = diag (p1, - .., fp).
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Solution of Part 1
Theorem on No Spill-over

e Choose any arbitrary parametric matrix ¢

e Define
F=oY"M

and Iy = &N Y M + YD)
Then

QAN MAAND—BF)+(K—BFy)) = {s% %, Api1, . .., Ao}
No Change.

Note: The construction of the matrices F} and F5 re-
quires knowledge of a small number of eigenvalues that
need to be reassigned and the eigenvectors.
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New Orthogonality Results on the
Eigenvectors of the Quadratic Matrix Pencil

Assume

{>\17 o 7>\p} a {)\}H—l: s 7>\2n}) — ¢
Partition A = diag (A1, As)

X = (X1, Xo)
Y = (11,1

Then
oMY EMXoN, — YEK X, =0

and

o\ Y M Xy + YHMXoAs + Y DX, = 0.
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Generalizes the well-known orthogonality result on
the eigenvectors of t he symmetric matrix and
symmetry definite linear pencil.

e X1 AX = Diagonal (Symmetric EVP)

XTAX = Diagonal

 VTRY — J Symmetric Definite GEVP
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Solution of Part II (How to Choose $7?)

Theorem on Partial Eigenvalue Assignment

If the matrix ® is obtained by solving the p X p linear
system

oz =T

where I' is arbitrary and Z; is a solution of the p X p
Sylvester equation:

MZ, — ZiNg =Y BT,

then F} and F5 defined in Part I will completely solve the
Partial Eigenvalue Assignment Problem. That is,

QN°M 4+ XN(D — BF)) + (K — BF,)) =

ety A Aok
Desiresed EVS No Change
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An Algorithm for QPEVAP

Step 1. Form

A = diag(Ag, ..., A), Y1 = (y1,...,yy) and Ay =
diag(pir, - - - s pp)-

Step 2. Choose arbitrary m x 1 vectors 71, ...,7, in such a
way that 7 = py. implies 7; = 73, and form

=y, %)

Step 3. Find the unique solution Z; of the p X p Sylvester
equation

MZ, — ZiAg =Y BT.

If Z; is ill-conditioned, then return to Step 2 and select
different v, ..., 7.
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Step 4. Solve &7 =1 for ®.

Step 5. Form F| = &Y and Fy, = d(\\ Y M + Y D).

e Standard Numerical Methods for Solving Sylvester
and Lyapunov Equations

(Eg. Chapter 8 of
Numerical Methods for Linear Control Systems)
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Computing Resources and Requirements for
Implementations

e A small number of eigenvalues and eigencectors
e Solution of a small Sylvester equaiton

e Solution of a small linear algebraic system
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Practical and Computational Features

e Applicable to even very large real-life structures
e No transformation or model reduction

e Suitable for high-performance computing
(Rich in BLAS-3 Computations.)

e Sparsity, bandness, symmetry, etc. can be exploited
e Mathematical guarantee of no spill-over

e [ixtension to more general problem of both partial
eigenvalue and eigenvector assignment

(QPESA)

e Generalizaiton to the Partial Eigenvalue Assignment
in DPS. (Infinite Dimensions).
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DPS problems are infinite dimensional.
Two Additional Fundamental Challenges

e Use finite dimensional control and computational tech-
niques

e Guarantee the invariance of the finite spectrum math-
ematically.
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Quadratic Partial Eigenstructure Assignment

Problem (QPESA)

Given

i. n X n symmetric matrices M, D, and K,
ii. A set of p desired eigenvalues {p, ..., u,}
iii. A set of p desired eigenvectors {y1,...,y,}

iv. A control matrix B of order n X m

Find matrices F} and F5 such that
Q(P.()\) = N°M + X(D — BF}) + (K — BE))
— {Hla" . 7Mp;>\p—l-1' . '7>\2n}

and the eigenvectors of P.(\) are

{yl, c e ,yp; .217p+1, ce ,:IZQn}.
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An Algorithm for QPESA
Step 1. Form A; = diag(Ay, ..., \)),
§/1 — <y17' . '7yp>7

Ao = diag(pg, ..., pp), and Xop, ..., Tep).

Step 2. Form the matrix
Zy = NYPMX o+ Y"MXaAg + YHOX,.
Stop if Z; is singular and conclude that the eigenstruc-

ture assignment with the given sets of eigenvalues and
eigenvectors is not possible.
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Step 3. Form the matrix T, such that T, AT CH is a real
matrix.

Step 4. Form

B = (MXclAgl + CXala + KXd)TcH?
B =T7Z Y \NY{ M+ Y10

by solving the appropriate linear systems.

e There also exists a parametric Algorithm (as that of

QPEVA)

(Ph.D Thesis by Daniil Sarkissian, Northern Illi-
nois University, 2001).
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ITI. Partial Eigenvalue Assignment (PEVA)
in Distributed Parameter Systems

Reassign a small part of the infinite open-loop spectrum
of the operator pencil P(\) = A>M + AC' + K, by using
feedback such that

i. the set is replaced by a suitable chosen set

ii. the remaining infinitely many eigenvalues do not change

{Al,...,)\p}:>{,u1,...,up}

{)\p+1, .. } — {)\p_|_1, .. }
No Change
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Mathematical Statement of the PEVA in DPS

Given

e The operators M, C, and K, of the DPS
o A self conjugate set of numbers {p1, ..., 1y}

e Suitable control functions by, ..., b,,.

Find Real Feedback Functions fi1,..., fi,n and
Jo1, -+ fom such that

m

Q(P.(N)g) = XM+ ACod = > (fir, d)i)
m = (1)
+(K¢ =Y (fors d))

k=1

is the set S = {1, -+, tp; Apr1, Apray -+ )
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Theorem (Parametric Solution to the Partial Eigen-
value Assignment Problem for a Quadratic Op-
erator Pencil).

Part (i) (No-spill-over Part).
Define the feedback functions fi and for fork =1,2,...,m
by

p
flk — Z (T)k:jM*Uj

J=1

p
ka = Z (I)kj<§\jM*vj + C*Uj>,
7=1

by choosing ®; arbitrarily, then the infinite part of
the spectrum {)\,,4,......} of P(\) will remain un-
changed.
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Part (ii) (Assignment Part).
Define A1 = diag

()\1, ---7)\p>7Acl = dlag (,ul, ...,,up).

Let I' = (71, ...,7,) be an

m X p matrix such that v; = 7, whenever p; = f;.. Let
Z1 be the unique nonsingular solution to the Sylvester
equation:

<U1,b1> (Ul,bm>
M2y — Z1Ng = :

(U 1) . (0p, b
If the matrix & = ($y;) of Part (i) of the Theorem is

chosen such that ® satisfies the p x p linear algebraic
system

o7, =T,

then
Q(Pcl()\>> = {,LLl7 coey My >‘p+17 ceey }
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Algorithm. (Parametric Solution to the Partial
Eigenvalue Assignment Problem in Distributed
Parameter System)

Inputs:

(a) The differential operators M, C', and K of the
open-loop pencil P(\).

(b) The m control functions by, ..., b,.

(c) The set of scalars {1, ..., 4}, closed under complex
conjugation.

(d) The self-conjugate subset {1, ..., \,} of the open -
loop spectrum {Aq, Ao, ...} and the associated eigen-
function set {vy, ..., v,}.

Outputs:
The feedback functions fi,..., f,, and fo1, ..., fo,, such

that the spectrum of the closed-loop operator pencil is
the set {1, ..y p; Apt1, Apra, .o}
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Assumptions:

e The control functions by, ..., b, are linearly indepen-
dent.

e The open-loop quadratic operator pencil P(\) = A\2M+
AC + K with control functions b4, ..., b, is partially
controllable with respect to the eigenvalues Ag, ..., A,.

o Thesets {1, ... \p}, {1, Apray -}y and { o, oo )
are disjoint.

e The open-loop operator pencil P(\) has a discrete
spectrum without finite accumulation points,
every eigenvalue is Semi-simple, and the system of
eigenfunctions of P()) is two-fold complete.

(Large Body of Literature on Spectral Theory of
Operators).
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Step 1. Form A; = diag (A1, ..., \,) and Ay = diag
(1 ey )

Step 2. Choose arbitrary m x 1 vectors 71, ...,7, in
such a way that [; = p implies 7; = 7 and form

['= (71,5 7)-

Step 3. Solve the m x m Sylvester equation for Z;:

(Ul,b1> (’Ul,bm>
/\121 — ZlAcl = : : [

(Vp, b1) ... (vp, biy)

If Z; is ill-conditioned, then return to Step 2 and select
different Ay, ..., Ap.

Step 4. Solve the m X m linear system: ®Z; = I for
¢ = <¢z‘j)-
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Step 5. If none of the Ay, ..., A, is zero, form for all
k=1, ...m

p
1k = Z ¢ M v;, and
j_
p R _
Jor = — Z(¢kj/)‘j)K*%
j=1

otherwise, form for all k =1, ...,m

)

fur = Z i M*v;, and

for = Z (N M vj+ C*vy).
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Distinguished Practical Features

e Only a small finite part of the infinite spectrum (and
the associated eigenfunctions) is needed to numeri-
cally implement the algorithm; thus, making the
algorithm viable for real-life practical ap-
plications.

e Mathematically, it can be shown that the algorithm
produces a no spill-over. That is, the infinite
number of eigenvalues of the open-loop operator pen-
cil that are not reassigned, remain invariant under

feedback.

e An infinite-dimensional control problem is solved us-
ing finite-dimensional control and numerically viable
finite computational techniques (note that for real-
life applications, control and computational
techniques should be finite).

e The algorithm is parametric in nature. This prop-
erty can be exploited in designing a numerically
robust feedback control.
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Case Study With Finite Dimensional Problem

Vibration of Rotating Axel in a Power Plant
Mathematical Model: P(\) = MM +AD + K

o M = diag (mq1,ma, ..., my).

e ) = Symmetric tridiagonal

e { = Symmetric tridiagonal
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—i ,1+1=7
D — <d2]>, Whel”e d@j — < Vi—1 + 6i + Yi . /[/‘ =]
—j , 1=7]+ 1
U , otherwise
and
(—& L 1+1=9
K = (ki;), where k;; = < —k, it
| 0 , otherwise
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A Benchmark Example

n =111

e The open-loop Eigenvalues (222 Eigenvalues)

A = —1.3734 x 1079

(The Most Unstable Eigenvalue)
R.(\;) < —0.016267, j =2,3,...,422.

(Better Stability Property)

The largest contribution to the shape of the transient
response is generated by the eigenvectors correspond-
ing to M.
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A = 1 = —0.016 (vibration will be suppressed 10°
fold)

The control matrix

B =

[' = parametric matrix

= (—0.51454, —0.85747) .
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Experimental Results

e \; was assigned to p; accurately

e 1 was assigned to y; accurately

e 2-Norm difference between the open-loop and closed-
loop eigenvalue is about 1.7 x 107°

o ||F1]| < 116, ||| < 22

o 1Al < 0.57 and =212 151011

" 1D (15112

(Small Feedback Norms Desirable for
Robustness)
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Conclusion

The Vibrations of the rotating turbine axel are suppressed
nearly 10° - fold by using small feedback control forces
generated by the Algorithm.
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Finite Element Model Updating Problem:

Given

1. The finite element generated symmetric matrices M, K,
and D:

M=M'>0 K=K!'>0and D=D"

2. A set of measured eigenvalues {1, ..., ft} and the
eigenvectors {y1, ..., ymn} from a real-life structure.
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Find the symmetric updates AM, AD, and AK such
that the quadratic eigenvalue pencil associated with the
updated model

P,(\) = XM +AD + K =0,

where
M=M+AM
D=D+AD
K=K+AK

has the spectrum
{lula ceey Homy; >\m+17 sy )\271}
while the eigenvectors of P,(\) are

{y17y27 e Ymy T4l - - 733271}
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Difficulties

e Finite-Element Models are of very High-
order.

Model Size Needs to be Reduced (Model Reduc-
tion)

e Difficult to check no spill-over property com-
putationally or Experimentally.

e Incomplete Measured Data.

(Hard-wire Limitation)

Analytical Eigenvectors of Full-Length
Vs

Short Measured Eigenvectors.

Missing Entries Need to be Supplied.

o Complex Data

Real Finite Element Data

Vs
Complexr Measured Data From Real-life Structures.
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Challenges

e Problem should be solved without Model Reduc-
tion or reduction to condensed forms.

e Algorithms should be able to cope up with Incom-
plete Measured and Complex Data

e No spill-over phenomenon to be guaranteed mathe-
matically.

e Algorithms should use only the available small sub-
set of the eigenvalues and eigenvectors of the
quadratic pencil, and the measured data.
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Existing Techniques of Model Updating
and
Drawbacks

e The so-called optimization-based Direct Methods
deal with Linear model:

PO\ =AM — K

rather than the Quadratic Model:

Po(\) =M+ D+ K.

e Can not guarantee the no spill-over prop-
erty.
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“The updated mass and stiffness matrices have lit-
tle physical meaning and can to be related to physi-

cal changes to the finite-element model in the original
model,” Friswell and Mottershead.
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The Current Status of the Problem

e The problem well-studied and still very much active
work going on in Vibrating Industries

e Several hundred papers and a book (Finite Ele-
ment Model Updating in Structural Dynam-
ics by M.I. Friswell and J.E. Mottershead, 1995).

e Many Adhoc solutions by Industries (sometimes Not
Based on Sound Mathematical Reasoning)

e Problem Not Solved in desirable way
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Most Recent Developments

e (B.N. Datta) Finite Element Model Updating, Figen-
structure Assignment, and Figenvalue Embedding
for Vibrating Systems, J. Mechanical Vibration and
Signal Processing (2003).

e Ph.D Thesis of Joao Carvalho, NIU 2002.
(The State-of-the-Art-Result on FEMU)

e Symmetric Eigenvalue Embedding Approach
(Carvalho, B.N. Datta, W.W. Lin and J.N. Wang)

Available at the website:

www.math.niu.edu/~dattab

56



Finite-Element Model Updating in
Undamped Model

(Carvalho '2002).

e The problem is Completely Solved in the case of
Undamped Model

e The difficulties with incomplete measured data are
resolved in the algorithm itself.
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PART I (Updating of K with No Spill-over)

A = The Finite Element Matrix of Eigenvalues.
X = The Finite Element Matrix of Eigenvectors.

Partition

A = diag(Ag, Ao) :

Ay = diag{A1,..., \p}

Ay = diag{ A1, .., Aop}
X =(X,Xo): Xy ={x1,...,x}, Xo=A{xps1,. .., 2o}

Theorem

Let i
K=K-MX®X{ M.

Then if ¢ is a symmetric matrix,
(1) K is a symmetric matrix
and
(i1) MXoAy+ KX5 =0
—> No Spill-over.
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PART II (Assignment of Measured Data)

> = The Matrix of Measured Eigenvalues

Y, = Matrix of Measured Eigenvectors

Theorem Let ® satisfy the Sylvester matrix equation:

YIMX)O(YIMX,) =YVIMYY + Y KY;.

Then (i) ¢ is symmetric

(ii) The spectrum of the updated pencil A2’M + K con-
tains the measured eigenvalues and eigenvectors and the
remaining eigenvalues and eigenvectors do not
change.

oQ(A2M+lN() = { Measured eigenvalues; \, ..., A\, }

eEigenvectors of (A\2M + K) : {Measured eigenvectors;
Tp+1--- ,[Ifgn}.
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Notes: Y; = Measured Eigenvector Matrix

= Not Completely Known

(Y11 +— Known
~ \ Y)5 «— Unknown

e The unknown part is computed appropriately by the
Algorithm.
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Model Updating of an Undamped Symmetric Positive
Semidefinite Model Using Incomplete Measured Data

Input: The symmetric matrices M, K € R"™": the
set of m analytical frequencies and mode shapes to be
updated; the complete set of m measured frequencies and
model shapes from the vibration test.

Output: Updated stiffness matrix K.
Assumption: M = M' >0and K = K > 0.

Step 1: Form the matrices Z% c R™™ and Y7 €
R™*™ from the available data. form the corresponding
matrices A7 € R™™ and X; € R™™,

Step 2: Compute the matrices Uy € R™™ U, €
R™(=m) and Z € R™™ from the QR factorization:

MX, = U, U)] [OZ]
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Step 3: Partition M = [My M,|, K = |K; K| where
M17 Kl c R,

Step 4: Solve the following matrix equation to obtain
Yy, € R(n—m)xm:

U MyY1oX + U KoYys = —U [K Yy 4+ MYy

and form the matrix
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Theorem on Symmetry Preserving Partial
Eigenvalue Assignment

Let (A, y1) be an unwanted real isolated eigenpair of
P(\) = N*M + \D + K with yi Ky, = 1. Let A\ be
reassigned to py. Define 0, = yi My, and assume that
1 — )\1,&181 7& 0 and 1 — )\%91 7& 0.

Ay —
Also, define € = L= Then the following updated
1 — Apr64

matrix polynomial

Py(\) = MMy + A\Dy + Ky
with
MU = M — 61)\1My1y{M

Dy =D+ ea(Myy{ K + Kyy M)
Ky =K — %KylleK
1
1s such that
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i. The eigenvalues of Py(\) are the same as those of
P(\) except that A; has been replaced by ;.

ii. y1 is also an eigenvector of Py(A) corresponding to
the embedded eigenvalue pi.

iii. If (A9, yo) is an eigenpair of P(\), where Ay # Ay,
then (Ao, y2) is also an eigenpair of Py (\).
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Conclusions

e Some very interesting (but very difficult) Inverse
Eigenvalue Problems arising in practical Industrial
Applications.

e Real-life applicable and mathematically sound
solutions.

e Many existing industrial techniques are ad-hoc in
nature. Not much consideration for mathematical
difficulties and challenges.

e Very often lacks strong mathematics foundations.
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e Industries in Japan and (Germany take more math-
ematical approach to industrial problems.

e Need people with industrial aptitude and inter-
disciplinary training blending Linear Algebra,
Numerical Linear Algebra, and Scientific Comput-
ing with areas of engineering such as Mechanical
and FElectrical Engineering. Such expertise are
rare.

e Curricular in both Engineering, Mathematics
and Computer Science need to be re-looked into
for opportunities for interdisciplinary courses.

e Many engineering text books need to be rewrit-
ten incorporating recent developments in matrix com-
putations, scientific computing and mathe-
matical software.
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