Recent Advances on Feedback Control and Model Updating for Vibrating Structures : Linking Control to

Industry

by

Biswa Nath Datta Department of Mathematical Sciences Northern Illinois University DeKalb, IL **E-mail:** dattab@math.niu.edu **URL:** www.math.niu.edu/~dattab

Bilkent University, Bilkent, Ankara, Turkey, May 31, 2004 I. Feedback Control Design by Partial Eigenvalue Assignment.

II. Finite Element Model Updating Problem (FEMUP).

Updating Theoretical FEM Using Measured Data from Real-Life Structure

• Distributed Parameter Systems Model (DPS)

Distributed Parameter Systems:

$$M(x)\frac{\partial^2\nu(t,x)}{\partial t^2} + C(x)\frac{\partial\nu(t,x)}{\partial t} + K(x)\nu(t,x) = 0.$$

M, C, and K are **differential operators** in the xdomain (spatial domain) of the displacement function $\nu(t, x)$.

 $\nu(t, x)$ belongs to some Hilbert space.

M = Mass operator (Self Ajoint) K = Stiffness operator (Self Ajoint) C = D + G D = Damping operator G = Gyroscopic operator (Skew Symmetric)

 $/ PS frag \ where pop(1) [[0(Bl)1\ 0]](2) [[1(Bl)1\ 0]](3) [[2(Bl)1\ 0]](4) [[3(Bl)1\ 0]](5) [[4(Bl)1\ 0]](6) [[5(Bl)1\ 0]]$

Figure: CONTROL DESIGN AND IMPLEMENTATION IN A VIBRATING STRUCTURE

Examples of Resonance

Dangerous vibrations such as **resonance** are caused by a few bad eigenvalues.

Classical Examples of Resonance:

- The Fall of the Tacoma Bridge
- The Fall of the Broughton Bridge in England
- Wobbling of the Millennium Bridge over the River Thames in London, England

(www.arup.com/Millenniumbridge)

Phenomenon of Resonance

• The Discretized Finite Element Model

 $M\ddot{x}(t) + D\dot{x}(t) + Kx(t) = 0.$

• The Associated Quadratic Matrix Eigenvalue Problem:

$$(\lambda^2 M + \lambda D + K)x = 0.$$

The dynamics are governed by
 Natural Frequencies → Eigenvalues of the QEP.
 Mode Shapes ≡ Eigenvectors of the QEP.

Response of a Structure due to Harmonic Input

$$j = \sqrt{(-1)}.$$

- $f(t) = \text{External Force} = f_o \ e^{j\omega t}$
- Oscillatory Solution $x(t) = x(t)e^{j\omega t}$
- $(K + j\omega D \omega^2 M)xe^{j\omega t} = f_o e^{j\omega t}$
- $x = (K + j\omega D \omega^2 M)^{-1} f_o$ (Response).

As
$$j\omega \to \lambda_j$$

 $||P(j\omega)^{-1}||$ increases without bound.

• Resonance is caused by closed proximity of an external frequency to that of a natural frequency.

How to Avoid Resonance?

• Feedback Control can be used

Idea: Replace {computed Unwanted eigenvalues} \longrightarrow {suitably chosen ones}

and

Leave the remaining large number unchanged. (No spill-over)

Feedback Control in Second-order Model

A possible Remedy: Apply a suitable control force to the structure. Use the technique of feedback control.

Matrix Second-order Model with Control

$$M\ddot{x}(t) + D\dot{x}(t) + Kx(t) = Bu(t)$$

Choose $u(t) = F_1 \dot{x}(t) + F_2 x(t)$.

Then the closed-loop system is

$$M\ddot{x}(t) + D\dot{x}(t) + Kx(t) = B(F_1\dot{x}(t) + F_2x(t))$$

$$M\ddot{x}(t) + (D - BF_1)\dot{x}(t) + (K - BF_2)x(t) = 0.$$

The associated matrix quadratic pencil is:

$$P_c(\lambda) = \lambda^2 M + \lambda (D - BF_1) + (K - BF_2) = 0.$$

This pencil is called the **closed-loop pencil**.

Notations

- The spectrum of the quadratic pencil: $\Omega(P(\lambda)) = \{\lambda_1, ..., \lambda_p; \lambda_{p+1}, ..., \lambda_{2n}\}$
- The right eigenvectors of the:

$$\{x_1, ..., x_p; x_{p+1}, ..., x_{2n}\}$$

• The left eigenvectors of the pencil:

$$\{y_1,\ldots,y_p;y_{p+1}\ldots,y_{2n}\}.$$

Quadratic Partial Eigenvalue Assignment Problem (QPEVAP)

Given

- (i) The system matrices $M, K, D, \in \mathbb{R}^{n \times n} (M = M^T > 0, \quad K = K^T \ge 0 \text{ and } D = D^T).$
- (ii) A control matrix $B \in \mathbb{R}^{n \times m}$
- (iii) A set of computed unwanted eigenvalues $\{\lambda_1, ..., \lambda_p\}$.
- (iv) A set of user's chosen eigenvalues $\{\mu_1, ..., \mu_p\}$.

Find the Feedback Matrices F_1 and F_2 such that

$$\Omega(P_c(\lambda)) = \{\mu_1, \ldots, \mu_p; \ \lambda_{p+1}, \ldots, \lambda_{2n}\}.$$

$$\{\lambda_1, ..., \lambda_p\} \longrightarrow \{\mu_1, ..., \mu_p\}$$
$$\{\lambda_{p+1}, ..., \lambda_{2n}\} \longrightarrow \{\lambda_{p+1}, ..., \lambda_{2n}\}$$

Stabilizing a Second-order System

• Solution of the QPEVA problem can be used to stabilize a matrix second-order system by feedback.

(A Special Case)

Two Standard Approaches for Control

- Solution via transformation to a **first-order State-Space Form**
- Independent Modal Space Control (IMSC) Approach.

Both these approaches have severe computational difficulties and engineering limitations.

Standard First-order Reduction

Recall the second-order feedback control system

 $M\ddot{x}(t) + (D - BF_1)\dot{x}(t) + (K - BF_2)x(t) = 0.$

• Reduction to Standard First-order State-space Form:

$$\dot{q}(t) = \begin{pmatrix} 0 & I \\ -M^{-1}K & -M^{-1}D \end{pmatrix} q(t) + \begin{pmatrix} 0 \\ M^{-1}B \end{pmatrix} u(t)$$

Difficulties

- Ill-conditioned matrix inversion might be necessary.
- All important structures such as *sparsity*, *definiteness and bandness* etc. are lost.
- Problem size becomes double.

Opportunities

 Many numerically excellent methods can be used (Numerical Methods for Linear Control Systems Design and Analysis, by B.N. Datta) Non-standard first-order reduction:

$$\begin{pmatrix} -K & 0\\ 0 & M \end{pmatrix} \dot{z}(t) = \begin{pmatrix} 0 & -K\\ -K & -D \end{pmatrix} z(t) + \begin{pmatrix} 0\\ B \end{pmatrix} u(t)$$

or

 $E\dot{z}(t) = Az(t) + \hat{B}u(t)$ (Descriptor System)

- Numerical methods for descriptor systems not welldeveloped (*E* could be *singular* or *very ill-conditioned*)
- A is symmetric but not positive definite even if M, K, and D are.

Approach II Independent Space Control (IMSC) Approach.

(For Open-loop Decoupling)

• Requires complete knowledge of the spectrum and eigenvectors of the open-loop pencil

$$P(\lambda) = \lambda^2 M + \lambda D + K.$$

Impractical for large and sparse problems

(For closed-loop Decoupling)

 $BKM^{-1}D = DM^{-1}BK$ $BKM^{-1}K = KM^{-1}BK$

- Stringent requirements need to be satisfied on actuators and sensors which are impossible to satisfy in practice.
- **Ref:** Vibration with Control, Measurement, and Stability by D. Inman, Prentice Hall, 1989.

Challenges

- Use a small number of eigenvalues and eigenvectors that can be computed or measured.
- No transformation to a first-order system.
- No reduction of the order of the model or the order of the controllers.
- Mathematical guarantee needed for the no spillover property.

The Current Engineering Practice and Drawbacks

- Compute and control the first few frequencies and mode shapes (eigenvalues and eigenvectors).
- Hope that the large number of remaining eigenvalues and eigenvectors do not chan ge or do not spill-over to dangerous regions.
- Unfortunately, the spill-over almost always occurs.
- No mathematical basis

Recent Direct and Partial-Modal Approach for Feedback Control

(Collaborative work with Eric Chu, Sylvan Elhay, Yitshak Ram, Daniil Sarkissian, W.W. Lin, J.N. Wang, and others)

- **Direct** No transformation required.
- **Partial-Modal** Only knowledge of a small number of eigenvectors needed for implementation.
- Extension to the **Robust Partial Eigenvalue Assignment.** (Sensitivity minimization by minimization of the *eigenvector condition number and feedback normly*)

A New Approach for the Quadratic Partial Eigenvalue Assignment Problem

- Two-part solution
 - **Part I.** No spill-over part (with a parametric matrix).
 - **Part II. Partial Eigenvalue Assignment Part**. (with a special choice of the parametric matrix)

Notations

Define
$$\Lambda_1 = \text{diag} (\lambda_1, \dots, \lambda_p)$$

 $Y_1 = (y_1, y_2, \dots, y_p)$
 $\Lambda_{cl} = \text{diag} (\mu_1, \dots, \mu_p).$

Solution of Part I

Theorem on No Spill-over

- \bullet Choose any arbitrary parametric matrix Φ
- Define

$$F_1 = \Phi Y_1^H M$$

and $F_2 = \Phi(\Lambda_1 Y_1^H M + Y_1^H D)$

Then

$$\Omega(\lambda^2 M + \lambda(D - BF_1) + (K - BF_2)) = \{** \cdots *, \lambda_{p+1}, \dots, \lambda_{2n}\}.$$

No Change.

Note: The construction of the matrices F_1 and F_2 requires knowledge of a small number of eigenvalues that need to be reassigned and the eigenvectors.

New Orthogonality Results on the Eigenvectors of the Quadratic Matrix Pencil

Assume

$$\{\lambda_1, \cdots, \lambda_p\} \cap \{\lambda_{p+1}, \cdots, \lambda_{2n}\}) = \phi.$$

Partition $\Lambda = \text{diag}(\Lambda_1, \Lambda_2)$

$$X = (X_1, X_2) Y = (Y_1, Y_2)$$

Then

•
$$\Lambda_1 Y_1^H M X_2 \Lambda_2 - Y_1^H K X_2 = 0$$

and
• $\Lambda_1 Y_1^H M X_2 + Y_1^H M X_2 \Lambda_2 + Y_1^H D X_2 = 0.$

Generalizes the well-known orthogonality result on the eigenvectors of t he symmetric matrix and symmetry definite linear pencil.

• $X^T A X$ = Diagonal (Symmetric EVP)

•
$$X^T A X = \text{Diagonal} \\ X^T B X = I$$
 Symmetric Definite GEVP

Solution of Part II (How to Choose Φ ?) Theorem on Partial Eigenvalue Assignment

If the matrix Φ is obtained by solving the $p \times p$ linear system

$$\Phi Z_1 = \Gamma$$

where Γ is arbitrary and Z_1 is a solution of the $p \times p$ Sylvester equation:

$$\Lambda_1 Z_1 - Z_1 \Lambda_{cl} = Y_1^H B \Gamma,$$

then F_1 and F_2 defined in Part I will completely solve the Partial Eigenvalue Assignment Problem. That is,

$$\Omega(\lambda^2 M + \lambda(D - BF_1) + (K - BF_2)) = \\ \{\mu_1, \dots, \mu_p; \quad \lambda_{p+1}, \dots, \lambda_{2n}\}. \\ \text{Desiresed EVS} \quad \text{No Change} \end{cases}$$

An Algorithm for QPEVAP

Step 1. Form

 $\Lambda_1 = \operatorname{diag}(\lambda_1, \ldots, \lambda_p), Y_1 = (y_1, \ldots, y_p) \text{ and } \Lambda_{c1} = \operatorname{diag}(\mu_1, \ldots, \mu_p).$

- **Step 2.** Choose arbitrary $m \times 1$ vectors $\gamma_1, \ldots, \gamma_p$ in such a way that $\overline{\mu_j} = \mu_k$ implies $\overline{\gamma_j} = \gamma_k$ and form $\Gamma = (\gamma_1, \ldots, \gamma_p).$
- **Step 3.** Find the unique solution Z_1 of the $p \times p$ Sylvester equation

$$\Lambda_1 Z_1 - Z_1 \Lambda_{cl} = Y_1^H B \Gamma.$$

If Z_1 is ill-conditioned, then return to Step 2 and select different $\gamma_1, \ldots, \gamma_p$.

Step 4. Solve $\Phi Z_1 = \Gamma$ for Φ .

Step 5. Form $F_1 = \Phi Y_1^H$ and $F_2 = \Phi(\Lambda_1 Y_1^H M + Y_1^H D)$.

• Standard Numerical Methods for Solving Sylvester and Lyapunov Equations

(Eg. Chapter 8 of Numerical Methods for Linear Control Systems)

Computing Resources and Requirements for Implementations

- A small number of eigenvalues and eigencectors
- Solution of a small Sylvester equaiton
- Solution of a small linear algebraic system

Practical and Computational Features

- Applicable to even very large real-life structures
- No transformation or model reduction
- Suitable for high-performance computing (Rich in BLAS-3 Computations.)
- Sparsity, bandness, symmetry, etc. can be exploited
- Mathematical guarantee of no spill-over
- Extension to more general problem of both partial **eigenvalue** and **eigenvector assignment**

(QPESA)

• Generalization to the Partial Eigenvalue Assignment in **DPS**. (Infinite Dimensions).

DPS problems are **infinite dimensional**. **Two Additional Fundamental Challenges**

- Use finite dimensional control and computational techniques
- Guarantee the invariance of the finite spectrum mathematically.

Quadratic Partial Eigenstructure Assignment Problem (QPESA)

Given

- i. $n \times n$ symmetric matrices M, D, and K,
- ii. A set of p desired eigenvalues $\{\mu_1, \ldots, \mu_p\}$
- iii. A set of p desired eigenvectors $\{y_1, \ldots, y_p\}$
- iv. A control matrix B of order $n \times m$

Find matrices F_1 and F_2 such that $\Omega(P_c(\lambda) = \lambda^2 M + \lambda (D - BF_1) + (K - BF_2))$ $= \{\mu_1, \dots, \mu_p; \lambda_{p+1} \dots, \lambda_{2n}\}$

and the eigenvectors of $P_c(\lambda)$ are

$$\{y_1, \ldots, y_p; x_{p+1}, \ldots, x_{2n}\}.$$

An Algorithm for QPESA

Step 1. Form $\Lambda_1 = \operatorname{diag}(\lambda_1, \ldots, \lambda_p)$,

$$Y_1 = (y_1, \ldots, y_p),$$

 $\Lambda_{c1} = \operatorname{diag}(\mu_1, \ldots, \mu_p), \text{ and } X_{c1}, \ldots, x_{cp}).$

Step 2. Form the matrix

$$Z_1 = \Lambda_1 Y_1^H M X_{c1} + Y_1^H M X_{c1} \Lambda_{c1} + Y_1^H C X_{c1}.$$

Stop if Z_1 is singular and conclude that the eigenstructure assignment with the given sets of eigenvalues and eigenvectors is not possible. **Step 3.** Form the matrix T_c such that $T_c \Lambda_{c1} T_c^H$ is a real matrix.

Step 4. Form

$$B = (MX_{cl}\Lambda_{c1}^{2} + CX_{c1}\Lambda_{c1} + KX_{c1})T_{c}^{H},$$

$$F_{1} = T_{c}Z_{1}^{-1}Y_{1}^{H}M, \text{ and}$$

$$F_{2} = T_{c}Z_{1}^{-1}(\Lambda_{1}Y_{1}^{H}M + Y_{1}^{H}C)$$

by solving the appropriate linear systems.

• There also exists a parametric Algorithm (as that of QPEVA)

(Ph.D Thesis by **Daniil Sarkissian**, Northern Illinois University, 2001).

III. Partial Eigenvalue Assignment (PEVA) in Distributed Parameter Systems

Reassign a small part of the infinite open-loop spectrum of the operator pencil $P(\lambda) = \lambda^2 M + \lambda C + K$, by using feedback such that

i. the set is replaced by a suitable chosen set

ii. the remaining infinitely many eigenvalues do not change

$$\{\lambda_1, \dots, \lambda_p\} \Longrightarrow \{\mu_1, \dots, \mu_p\}$$
$$\{\lambda_{p+1}, \dots\} \Longrightarrow \{\lambda_{p+1}, \dots\}$$

No Change

Mathematical Statement of the PEVA in DPS

Given

- The operators M, C, and K, of the DPS
- A self conjugate set of numbers $\{\mu_1, \ldots, \mu_p\}$
- Suitable control functions b_1, \ldots, b_m .

Find Real Feedback Functions f_{11}, \ldots, f_{1m} and f_{21}, \ldots, f_{2m} such that

$$\Omega(P_c(\lambda)\phi) = \lambda^2 M \phi + \lambda (C\phi - \sum_{k=1}^m (f_{1k}, \phi)_k) + (K\phi - \sum_{k=1}^m (f_{2k}, \phi)_k)$$
is the set $S = \{\mu_1, \cdots, \mu_p; \lambda_{p+1}, \lambda_{p+2}, \cdots\}$.
$$(1)$$

Theorem (Parametric Solution to the Partial Eigenvalue Assignment Problem for a Quadratic Operator Pencil).

Part (i) (No-spill-over Part). Define the feedback functions f_{1k} and f_{2k} for k = 1, 2, ..., m by

$$f_{1k} = \sum_{\substack{j=1\\p}}^{p} \bar{\Phi}_{kj} M^* v_j$$
$$f_{2k} = \sum_{j=1}^{p} \bar{\Phi}_{kj} (\bar{\lambda}_j M^* v_j + C^* v_j),$$

by choosing Φ_{kj} arbitrarily, then the **infinite part of** the spectrum $\{\lambda_{p+1}, \ldots, \}$ of $P(\lambda)$ will remain unchanged.

Part (ii) (Assignment Part).

Define $\Lambda_1 = \text{diag}$

$$(\lambda_1, ..., \lambda_p), \Lambda_{c1} = \operatorname{diag}(\mu_1, ..., \mu_p).$$

Let $\Gamma = (\gamma_1, ..., \gamma_p)$ be an

 $m \times p$ matrix such that $\gamma_j = \overline{\gamma}_k$ whenever $\mu_j = \overline{\mu}_k$. Let Z_1 be the unique nonsingular solution to the **Sylvester** equation:

$$\Lambda_1 Z_1 - Z_1 \Lambda_{c1} = \begin{pmatrix} (v_1, b_1) & \dots & (v_1, b_m) \\ \vdots & & \\ (v_p, b_1) & \dots & (v_p, b_m) \end{pmatrix}$$

If the matrix $\Phi = (\Phi_{kj})$ of Part (i) of the Theorem is chosen such that Φ satisfies the $p \times p$ linear algebraic system

$$\Phi Z_1 = \Gamma,$$

then

$$\Omega(P_{c1}(\lambda)) = \{\mu_1, ..., \mu_p, \lambda_{p+1}, ..., ...\}$$

Algorithm. (Parametric Solution to the Partial Eigenvalue Assignment Problem in Distributed Parameter System)

Inputs:

- (a) The differential operators M, C, and K of the open-loop pencil $P(\lambda)$.
- (b) The *m* control functions $b_1, ..., b_m$.
- (c) The set of scalars $\{\mu_1, ..., \mu_p\}$, closed under complex conjugation.
- (d) The self-conjugate subset $\{\lambda_1, ..., \lambda_p\}$ of the open loop spectrum $\{\lambda_1, \lambda_2, ...\}$ and the associated eigenfunction set $\{v_1, ..., v_p\}$.

Outputs:

The feedback functions $f_1, ..., f_m$ and $f_{21}, ..., f_{2m}$ such that the spectrum of the closed-loop operator pencil is the set $\{\mu_1, ..., \mu_p; \lambda_{p+1}, \lambda_{p+2}, ...\}$.

Assumptions:

- The control functions $b_1, ..., b_m$ are linearly independent.
- The open-loop quadratic operator pencil $P(\lambda) = \lambda^2 M + \lambda C + K$ with control functions $b_1, ..., b_m$ is partially controllable with respect to the eigenvalues $\lambda_1, ..., \lambda_p$.
- The sets $\{\lambda_1, ..., \lambda_p\}$, $\{\lambda_{p+1}, \lambda_{p+1}, ...\}$, and $\{\mu_1, ..., \mu_p\}$ are disjoint.
- The open-loop operator pencil P(λ) has a discrete spectrum without finite accumulation points, every eigenvalue is Semi-simple, and the system of eigenfunctions of P(λ) is two-fold complete.

(Large Body of Literature on **Spectral Theory of Operators**).

Step 1. Form $\Lambda_1 = \text{diag} (\lambda_1, ..., \lambda_p)$ and $\Lambda_{c1} = \text{diag} (\mu_1, ..., \mu_p)$.

Step 2. Choose arbitrary $m \times 1$ vectors $\gamma_1, ..., \gamma_p$ in such a way that $\overline{\mu_j} = \mu_k$ implies $\overline{\gamma_j} = \gamma_k$ and form $\Gamma = (\gamma_1, ..., \gamma_p)$.

Step 3. Solve the $m \times m$ Sylvester equation for Z_1 :

$$\Lambda_1 Z_1 - Z_1 \Lambda_{c1} = \begin{pmatrix} (v_1, b_1) & \dots & (v_1, b_m) \\ \vdots & \ddots & \vdots \\ (v_p, b_1) & \dots & (v_p, b_m) \end{pmatrix} \Gamma.$$

If Z_1 is ill-conditioned, then return to Step 2 and select different $\lambda_1, ..., \lambda_p$.

Step 4. Solve the $m \times m$ linear system: $\Phi Z_1 = \Gamma$ for $\Phi = (\phi_{ij})$.

Step 5. If none of the $\lambda_1, ..., \lambda_p$ is zero, form for all k = 1, ..., m

$$f_{1k} = \sum_{j=1}^{p} \overline{\phi}_{kj} M^* v_j, \text{ and}$$
$$f_{2k} = -\sum_{j=1}^{p} (\overline{\phi}_{kj}/\overline{\lambda}_j) K^* v_j,$$

otherwise, form for all k = 1, ..., m,

$$f_{1k} = \sum_{\substack{j=1 \ p}}^{p} \bar{\phi}_{kj} M^* v_j$$
, and
 $f_{2k} = \sum_{j=1}^{p} \bar{\phi}_{kj} (\bar{\lambda}_j M^* v_j + C^* v_j).$

Distinguished Practical Features

- Only a small finite part of the infinite spectrum (and the associated eigenfunctions) is needed to numerically implement the algorithm; thus, **making the algorithm viable for real-life practical applications.**
- Mathematically, it can be shown that the **algorithm produces a no spill-over**. That is, the infinite number of eigenvalues of the open-loop operator pencil that are not reassigned, remain invariant under feedback.
- An infinite-dimensional control problem is solved using finite-dimensional control and numerically viable finite computational techniques (note that for reallife applications, control and computational techniques should be finite).
- The algorithm is **parametric** in nature. This property can be exploited in designing a **numerically robust feedback control.**

Case Study With Finite Dimensional Problem Vibration of Rotating Axel in a Power Plant

Mathematical Model: $P(\lambda) = \lambda^2 M + \lambda D + K$

- $M = \text{diag}(m_1, m_2, \dots, m_n).$
- D = Symmetric tridiagonal
- K =Symmetric tridiagonal

Set
$$\gamma_0 = \gamma_n = \kappa_0 = \kappa_n = 0$$

 $D = (d_{ij})$, where $d_{ij} = \begin{cases} -\gamma_i & , i+1=j \\ \gamma_{i-1}+\delta_i+\gamma_i & , i=j \\ -\gamma_j & , i=j+1 \\ 0 & , \text{ otherwise} \end{cases}$

and

$$K = (k_{ij}), \text{ where } k_{ij} = \begin{cases} -\kappa_i & , i+1=j\\ \kappa_{i-1}+\kappa_i & , i=j\\ -\kappa_j & , i=j+1\\ 0 & , \text{ otherwise} \end{cases}$$

A Benchmark Example

n = 111

• The open-loop Eigenvalues (222 Eigenvalues)

 $\lambda_1 = -1.3734 \times 10^{-6}$

(The Most Unstable Eigenvalue)

 $R_e(\lambda_j) \leq -0.016267, \ j = 2, 3, \dots, 422.$

(Better Stability Property)

The largest contribution to the shape of the transient response is generated by the eigenvectors corresponding to λ_1 . $\lambda_1 \Longrightarrow \mu_1 = -0.016$ (vibration will be suppressed 10^3 fold)

$$x_1 \Longrightarrow \frac{1}{\sqrt{211}} (1, 1, \dots, 1)^T = y_1.$$

The control matrix

$$B = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 1 \end{pmatrix}^T$$

 $\Gamma = \text{parametric matrix}$

 $= (-0.51454, \ -0.85747)^T.$

Experimental Results

- λ_1 was assigned to μ_1 accurately
- x_1 was assigned to y_1 accurately
- \bullet 2-Norm difference between the open-loop and closed-loop eigenvalue is about 1.7×10^{-6}
- $||F_1|| < 116, ||F_2|| < 22$

•
$$\frac{||F_1||}{||D||_2} < 0.57$$
 and $\frac{||F_2||_2}{||K||_2} < 15.10^{-11}$

$(\begin{subarray}{c} {\bf Small \ Feedback \ Norms \ Desirable \ for \ Robustness})$

Conclusion

The Vibrations of the rotating turbine axel are suppressed nearly 10^3 - fold by using small feedback control forces generated by the Algorithm.

Finite Element Model Updating Problem:

Given

1. The finite element generated symmetric matrices M, K, and D:

$$M = M^T > 0, \ K = K^T \ge 0 \text{ and } D = D^T$$

2. A set of measured eigenvalues $\{\mu_1, \ldots, \mu_m\}$ and the eigenvectors $\{y_1, \ldots, y_m\}$ from a real-life structure.

Find the **symmetric updates** ΔM , ΔD , and ΔK such that the quadratic eigenvalue pencil associated with the updated model

$$P_u(\lambda) = \lambda^2 \tilde{M} + \lambda \tilde{D} + \tilde{K} = 0,$$

where

$$\begin{split} \tilde{M} &= M + \Delta M \\ \tilde{D} &= D + \Delta D \\ \tilde{K} &= K + \Delta K \end{split}$$

has the spectrum

$$\{\mu_1,\ldots,\mu_m;\ \lambda_{m+1},\ldots,\lambda_{2n}\}$$

while the eigenvectors of $P_u(\lambda)$ are

$$\{y_1, y_2, \ldots, y_m; x_{m+1}, \ldots, x_{2n}\}$$

Difficulties

• Finite-Element Models are of very Highorder.

Model Size Needs to be Reduced (Model Reduction)

- Difficult to check no spill-over property computationally or Experimentally.
- Incomplete Measured Data.

(Hard-wire Limitation) Analytical Eigenvectors of Full-Length Vs Short Measured Eigenvectors. Missing Entries Need to be Supplied.

• Complex Data

Real Finite Element Data Vs Complex Measured Data From Real-life Structures.

Challenges

- Problem should be solved without **Model Reduction** or reduction to condensed forms.
- Algorithms should be able to cope up with **Incomplete Measured and Complex Data**
- No spill-over phenomenon to be guaranteed **mathematically**.
- Algorithms should use only the available **small subset of the eigenvalues and eigenvectors** of the quadratic pencil, and the measured data.

Existing Techniques of Model Updating and Drawbacks

• The so-called optimization-based **Direct Methods** deal with **Linear model**:

$$P_i(\lambda) = \lambda M - K$$

rather than the **Quadratic Model**:

$$P_Q(\lambda) = \lambda^2 M + D + K.$$

• Can not guarantee the no spill-over property.

"The updated mass and stiffness matrices have little physical meaning and can to be related to physical changes to the finite-element model in the original model," **Friswell and Mottershead.**

The Current Status of the Problem

- The problem well-studied and still very much active work going on in Vibrating Industries
- Several hundred papers and a book (Finite Element Model Updating in Structural Dynamics by M.I. Friswell and J.E. Mottershead, 1995).
- Many Adhoc solutions by Industries (sometimes **Not Based on Sound Mathematical Reasoning**)
- Problem **Not Solved** in desirable way

Most Recent Developments

- (B.N. Datta) Finite Element Model Updating, Eigenstructure Assignment, and Eigenvalue Embedding for Vibrating Systems, J. Mechanical Vibration and Signal Processing (2003).
- Ph.D Thesis of João Carvalho, NIU 2002.

(The State-of-the-Art-Result on FEMU)

• Symmetric Eigenvalue Embedding Approach (Carvalho, B.N. Datta, W.W. Lin and J.N. Wang)

Available at the website:

www.math.niu.edu/~dattab

Finite-Element Model Updating in Undamped Model

(Carvalho '2002).

- The problem is **Completely Solved** in the case of Undamped Model
- The difficulties with incomplete measured data are resolved in the algorithm itself.

PART I (Updating of *K* with No Spill-over)

 Λ = The Finite Element Matrix of Eigenvalues.

X = The Finite Element Matrix of Eigenvectors.

Partition

$$\Lambda = \operatorname{diag}(\Lambda_1, \Lambda_2) :$$

$$\Lambda_1 = \operatorname{diag}\{\lambda_1, \dots, \lambda_p\}$$

$$\Lambda_2 = \operatorname{diag}\{\lambda_{p+1}, \dots, \lambda_{2n}\}$$

$$X = (X_1, X_2) : X_1 = \{x_1, \dots, x_p\}, X_2 = \{x_{p+1}, \dots, x_{2n}\}.$$

Theorem

Let

$$\tilde{K} = K - M X_1 \Phi X_1^T M.$$

Then if Φ is a **symmetric matrix**,

(i) \tilde{K} is a symmetric matrix and (ii) $MX_2\Lambda_2 + \tilde{K}X_2 = 0$

 \implies No Spill-over.

PART II (Assignment of Measured Data)

 Σ = The Matrix of Measured Eigenvalues

 Y_1 = Matrix of Measured Eigenvectors

Theorem Let Φ satisfy the Sylvester matrix equation:

$$(Y_1^T M X_1) \Phi(Y_1^T M X_1) = Y_1 M Y_1 \Sigma + Y_1^T K Y_1.$$

Then (i) Φ is **symmetric**

(ii) The spectrum of the updated pencil $\lambda^2 M + \tilde{K}$ contains the measured eigenvalues and eigenvectors and the remaining eigenvalues and eigenvectors do not change.

• $\Omega(\lambda^2 M + \tilde{K}) = \{$ Measured eigenvalues; $\lambda_{p+1} \dots, \lambda_{2n} \}$ •Eigenvectors of $(\lambda^2 M + \tilde{K})$: {Measured eigenvectors; $x_{p+1} \dots, x_{2n} \}.$ **Notes:** Y_1 = Measured Eigenvector Matrix

= Not Completely Known

$$= \left(\begin{array}{ccc} Y_{11} \longleftarrow & \text{Known} \\ Y_{12} \longleftarrow & \text{Unknown} \end{array}\right)$$

• The unknown part is computed appropriately by the Algorithm.

Model Updating of an Undamped Symmetric Positive Semidefinite Model Using Incomplete Measured Data

Input: The symmetric matrices $M, K \in \mathbb{R}^{n \times n}$; the set of m analytical frequencies and mode shapes to be updated; the complete set of m measured frequencies and model shapes from the vibration test.

Output: Updated stiffness matrix \tilde{K} .

Assumption: $M = M^T \ge 0$ and $K = K^T \ge 0$.

Step 1: Form the matrices $\Sigma_1^2 \in \mathbb{R}^{m \times m}$ and $Y_{11} \in \mathbb{R}^{m \times m}$ from the available data. form the corresponding matrices $\Lambda_1^2 \in \mathbb{R}^{m \times m}$ and $X_1 \in \mathbb{R}^{n \times m}$.

Step 2: Compute the matrices $U_1 \in \mathbb{R}^{n \times m}$, $U_2 \in \mathbb{R}^{n \times (n-m)}$, and $Z \in \mathbb{R}^{m \times m}$ from the QR factorization:

$$MX_1 = \begin{bmatrix} U_1 \ U_2 \end{bmatrix} \begin{bmatrix} Z \\ 0 \end{bmatrix}$$

Step 3: Partition $M = [M_1 \ M_2], K = [K_1 \ K_2]$ where $M_1, K_1 \in \mathbb{R}^{n \times m}$.

Step 4: Solve the following matrix equation to obtain $Y_{12} \in \mathbb{R}^{(n-m) \times m}$:

 $U_2^T M_2 Y_{12} \Sigma + U_2^T K_2 Y_{12} = -U_2^T \left[K_1 Y_{11} + M_1 Y_{11} \Sigma \right]$

and form the matrix

$$Y_1 = \begin{bmatrix} Y_{11} \\ Y_{12} \end{bmatrix}$$

Theorem on Symmetry Preserving Partial Eigenvalue Assignment

Let (λ_1, y_1) be an unwanted real isolated eigenpair of $P(\lambda) = \lambda^2 M + \lambda D + K$ with $y_1^T K y_1 = 1$. Let λ_1 be reassigned to μ_1 . Define $\theta_1 = y_1^T M y_1$ and assume that $1 - \lambda_1 \mu_1 \theta_1 \neq 0$ and $1 - \lambda_1^2 \theta_1 \neq 0$.

Also, define $\epsilon = \frac{\lambda_1 - \mu_1}{1 - \lambda_1 \mu_1 \theta_1}$. Then the following updated matrix polynomial

$$P_U(\lambda) = \lambda^2 M_U + \lambda D_U + K_U$$

with

$$M_U = M - \epsilon_1 \lambda_1 M y_1 y_1^T M$$
$$D_U = D + \epsilon_1 (M y_1 y_1^T K + K y_1 y_1^T M)$$
$$K_U = K - \frac{\epsilon_1}{\lambda_1} K y_1 y_1^T K$$

is such that

- i. The eigenvalues of $P_U(\lambda)$ are the same as those of $P(\lambda)$ except that λ_1 has been replaced by μ_1 .
- ii. y_1 is also an eigenvector of $P_U(\lambda)$ corresponding to the embedded eigenvalue μ_1 .
- iii. If (λ_2, y_2) is an eigenpair of $P(\lambda)$, where $\lambda_2 \neq \lambda_1$, then (λ_2, y_2) is also an eigenpair of $P_U(\lambda)$.

Conclusions

- Some very interesting (but **very difficult**) Inverse Eigenvalue Problems arising in practical Industrial Applications.
- **Real-life applicable** and **mathematically sound** solutions.
- Many existing industrial techniques are **ad-hoc** in nature. Not much consideration for mathematical difficulties and challenges.
- Very often *lacks strong mathematics foundations*.

- Industries in Japan and Germany take more mathematical approach to industrial problems.
- Need people with industrial aptitude and interdisciplinary training blending *Linear Algebra*, *Numerical Linear Algebra*, and *Scientific Computing* with areas of engineering such as *Mechanical and Electrical Engineering*. Such expertise are rare.
- Curricular in both Engineering, Mathematics and Computer Science need to be re-looked into for opportunities for interdisciplinary courses.
- Many engineering text books need to be rewritten incorporating recent developments in matrix computations, scientific computing and mathematical software.