ARISTOTLE UNIVERSITY OF THESSALONIKI

"Notions of equivalences of multivariate polynomial matrices."

M.Sc.THESIS

EVAGELIA LAMPIRI

Supervisor: Nicholas Karampetakis
Associate Professor, Aristotle University Of Thessaloniki

ARISTOTLE UNIVERSITY OF THESSALONIKI

"Notions of equivalences of multivariate polynomial matrices."

M.Sc.THESIS

EVAGELIA LAMPIRI

Supervisor: Nicholas Karampetakis
Associate Professor, Aristotle University Of Thessaloniki

		Г. P $\alpha \chi$ ¢́vทs
	Плпрочорикйऽ	
	T $\mu \eta \dot{\mu} \alpha$ A.T.E.I. $\Theta \varepsilon \sigma$.	

^анлíp Eu $\alpha \gamma ү \varepsilon \lambda i ́ \alpha$
Птихıои́хо̧ МаӨŋцатıко́я А.П.Ө.

Copyright © $\wedge \alpha \mu \pi i \rho \eta$ Eu $\alpha ү \gamma \varepsilon \lambda i \alpha, 2014$.
$\mathrm{M} \varepsilon \varepsilon \pi \iota \phi u ́ \lambda \alpha \xi \eta$ паvтóৎ $\delta ı к \alpha \iota \omega \dot{\mu} \alpha т о \varsigma . ~ A l l ~ r i g h t s ~ r e s e r v e d . ~$

 алєuӨúvovtaı п $\rho \circ \varsigma ~ \tau о v ~ \sigma u ү ү \rho \alpha ф \varepsilon ́ \alpha . ~$

ПЕРІАНЧН

$\Sigma \tau \eta \vee \pi \alpha \rho о v ́ \sigma \alpha \delta ı \pi \lambda \omega \mu \alpha \tau ı \kappa \eta ́ \varepsilon \rho \gamma \alpha \sigma i ́ \alpha \gamma i ́ v \varepsilon \tau \alpha \iota \mu \varepsilon \lambda \varepsilon ́ \tau \eta \tau \omega \nu \beta \alpha ́ \sigma \varepsilon \omega v$ Gröbner $\kappa \alpha \iota \tau$ то

 $\varepsilon \rho \gamma \alpha \sigma i ́ \alpha$ вíval $\chi \omega \rho ı \sigma \mu \varepsilon ́ v \eta$ бє $\delta v ́ o \mu \varepsilon ́ \rho \eta$.

То $\pi \rho \omega ́ \tau о ~ \mu \varepsilon ́ \rho о \varsigma ~ \tau \eta \varsigma ~ \varepsilon \rho \gamma \alpha \sigma i ́ \alpha \varsigma, ~ \alpha \sigma \chi о \lambda \varepsilon i ́ \tau \alpha ı ~ \mu \varepsilon \tau ı \varsigma ~ \beta \alpha ́ \sigma \varepsilon ı \varsigma ~ G r o ̈ b n e r, ~ \kappa \alpha \theta \omega ́ \varsigma ~ \kappa \alpha ı ~ \tau о v ~$
 $\tau 0 v \varsigma \mu \varepsilon ́ \sigma \alpha \alpha \pi$ о́ то $\pi \rho о ́ \gamma \rho \alpha \mu \mu \alpha$ Mathematica.

Tо $\delta \varepsilon v ́ \tau \varepsilon \rho о \mu \varepsilon ́ \rho о \varsigma ~ \tau \eta \varsigma ~ \varepsilon \rho \gamma \alpha \sigma i ́ \alpha \varsigma, ~ \pi \varepsilon \rho ı \lambda \alpha \mu \beta \alpha ́ v \varepsilon 1 ~ \varepsilon ́ v v o ı \varepsilon \varsigma ~ \tau \omega \nu ~ 1-D ~ к \alpha ı ~ 2-D ~$
 $\varepsilon \kappa \tau \varepsilon v \eta ́ \varsigma \alpha v \alpha ́ \lambda v \sigma \eta \tau \eta \varsigma \alpha \nu \tau \iota \sigma \tau \rho \varepsilon ́ \psi \iota \mu\rceil \varsigma \imath \sigma \delta v v \alpha \mu i ́ \alpha \varsigma$ (unimodular equivalence) $\pi 0 v$
 ı $\sigma о \delta v v \alpha \mu i ́ \alpha \varsigma ~(e x t e n d e d ~ u n i m o d u l a r ~ e q u i v a l e n c e) ~ \pi о v ~ \alpha \varphi о \rho \alpha ́ ~ \pi о \lambda v \omega v v \mu ı к о v ́ \varsigma ~ \pi i ́ v \alpha \kappa \varepsilon \varsigma ~$
 ъ $\sigma о \delta v v \alpha \mu i ́ \varepsilon \varsigma ~ \kappa \alpha ı ~ \tau \alpha ~ \alpha v \alpha \lambda \lambda$ оí $\omega \tau \alpha \sigma \tau$ о七хєí α $\alpha v \tau \omega ́ v$.

Abstract

МEEEIV KヘEIDIA coprime $1 \sigma 0 \delta v v \alpha \mu i ́ \alpha$

Abstract

In the present Thesis is studied the Gröbner bases and their algorithm (Buchberger algorithm). Moreover, it concerns about equivalence relations and specifically equivalences of 1-D and 2-D polynomial matrices. This paper consists of two parts.

The first part of this thesis deals with Gröbner bases, as well as Buchberger algorithm for finding these. Furthermore, it is given the way to find them through the program of Mathematica.

The second part of this thesis includes notions of 1-D and 2-D polynomial matrices and the points on which they differ. There is also an extensive analysis of the unimodular equivalence which is about polynomial matrices of the same dimension and of the extended unimodular equivalence that is about polynomial matrices of different dimensions. Lastly, given the zero coprime equivalence and factor coprime equivalence and the invariants of them.

Abstract

AEEEIL KAEIDIA Monomial ordering, division algorithm, Gröbner bases, Buchberger algorithm, equivalences, Smith form, polynomial matrices, unimodular equivalence, extended unimodular equivalence, zero coprime equivalence, factor coprime equivalence

ПРОАОГОХ

 $\mu \circ v$ દ́ $\delta \omega \sigma \varepsilon$ v α $\sigma v v \varepsilon \chi i ́ \sigma \omega ~ \tau ı \varsigma ~ \sigma \pi о v \delta \varepsilon ́ \varsigma ~ \mu о v . ~$

 ноч лорві́а.

Table of Contents

Glossary of Notation 9
Chapter 1 10
Gröbner bases 10
1.1 Primary notions and definitions 11
1.2 Monomial Ordering 16
1.3 Division algorithm. 25
1.4 Gröbner bases 30
1.5 Buchberger's algorithm 34
1.6 Gröbner bases in Mathematica 39
Chapter 2 42
Equivalence of Polynomial Matrices 42
2.1 1-D Polynomial Matrices. 43
2.1.1 Important Notions and Definitions 43
2.1.2 Coprimeness of 1-D poynomial matrices 50
2.2 Equivalences in 1-D polynomial matrices 56
2.2.1 Equivalence relation. 56
2.2.2 Unimodular Equivalence 57
2.2.3 Equivalence of Binomials 61
2.2.4 Extended Unimodular Equivalence 63
2.3 2-D Polynomial Matrices. 68
2.3.1 Notions of Coprimeness 70
2.3.2 Invariant Polynomials and Zeros 79
2.4 Equivalences in 2-D polynomial matrices 81
Referenences 96

Glossary of Notation

F	R or C;
R	the field of real numbers;
$R[x]$	the ring of polynomials in the single indeterminates x with coefficients in the field F;
$R\left[x_{1}, x_{2}, \ldots, x_{n}\right]$	the ring of polynomials in the n indeterminates $x_{1}, x_{2}, \ldots, x_{n}$ with coefficients in the field F;
I	an ideal;
\mathbb{N}	the natural numbers;
$A_{j_{1}, j_{2}, \ldots, j_{k}}^{i_{1}, i_{2}, \ldots, i_{k}}$	the $k^{\text {th }}$ order minor of the matrix A using rows $i_{1}, i_{2}, \ldots, i_{k}$ and columns $j_{1}, j_{2}, \ldots, j_{k}$;
$\|A\|, \operatorname{det}(A)$	the determinant of the matrix A;
$\operatorname{adj}(A)$	the adjoint of the matrix A;
$\operatorname{rank}(A)$	the rank of the matrix A;
A^{-1}	the inverse of the matrix A;
A^{+}	the generalized inverse of the matrix A;
A^{T}	the transpose of the matrix A;
I_{p}	the identity matrix with dimension $p \times p$;

Chapter 1

Gröbner bases

1.1 Primary notions and definitions

Initially, we will mention some primary notions and definitions, which will help us to understand better the aftermath. The ring is one such a notion, which is an algebraic structure with two binary operations.

The theory of rings sprang through the study of two specific rings classes, the ring of polynomials in n variables over the real or complex numbers and the "integers" of a body of algebraic numbers. First it was David Hilbert (1862-1943) who introduced the term ring, but it needed to get to the second decade of $20^{\text {th }}$ century to see a completely abstract definition. The theory of computing rings was founded by Emmy Noether (1882-1935) in her monumental work "Theory of Ideals in Rings", which appeared in 1921.

Definition 1.1 [1]

A group, denoted $<G, *>$, is a set G, together with a binary operation $*$ in G, such that the following axioms are satisfied:

G1.The binary operation $*$ is associative.
G2.There exists an element e in G, such that $e * x=x * e=x$ for every $x \in G$. (This element e is called identity element for $*$ in G)
G3.For every a in G, there exists an element a^{\prime} in G with the property $a^{\prime} * a=$ $a * a^{\prime}=e$. (The element a^{\prime} is called inverse of a as to the operation $*$)

Note: A group G is called abelian (in honour of Niels Abel) if the binary of the operation $*$ is commutative.

Definition 1.2 [1]

A ring, denoted $\langle G,+, *\rangle$, is a set with two binary operations + and \cdot, referred to as addition and multiplication, which satisfies the following axioms:
$\mathrm{R} 1 .<G,+>$ is an abelian group.
R 2 .Multiplication is associative.
R3. For all $a, b, c \in R[x]$ the left distributivity law is valid, $a(b+c)=a b+a c$, and the right distributivity law, $(a+b) c=a c+b c$.

If, in addition, multiplication is commutative too, i.e. $a \cdot b=b \cdot a$ for all
$a, b \in<G,+, *\rangle$, then $\langle G,+, *\rangle$ is called a commutative ring. $\langle G,+, *\rangle$ is called a ring with 1 , or ring with unity if it contains a distinguished element 1 with $1 \neq 0$ and $1 \cdot a=a$ for all $a \in<G,+, *>$.

Definition 1.3 [9]

The set of polynomials $a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}, a_{i} \in \mathbb{R}, \mathrm{n}$ finite, is denoted $R[x]$. On $R[x]$ we can define with the natural way the addition and multiplication. Then it can be easily proved that $R[x]$ is a ring.

Since $R[x]$ is a ring, it makes sense to consider the set $(R[x])[y]$, i.e., polynomials in y with coefficients in $R[x]$. We see that

$$
\begin{aligned}
(R[x])[y] & =\left\{f_{0}+f_{1} y+f_{2} y^{2}+\cdots+f_{n} y^{n}, f_{i} \in R[x]\right\} \\
& =\left\{r_{0}+r_{1} x+r_{2} y+r_{3} x^{2}+r_{4} x y+r_{5} y^{2}+\cdots\right\} \\
& =\left\{g_{0}+g_{1} x+g_{2} x^{2}+\cdots+g_{m} x^{m} \mid g_{i} \in R[y]\right\} \\
& =(R[y])[x] .
\end{aligned}
$$

So $(R[x])[y]=(R[y])[x]$, and can therefore be denoted by $R[x, y]$ without any risk for confusion. Likewise, we can define the polynomial ring over R in n variables $x_{1}, x_{2}, \ldots, x_{n}$. This polynomial ring is denoted by $R\left[x_{1}, x_{2}, \ldots, x_{n}\right]$.

Example 1.1

We know that the axioms $R 1-R 3$ of the ring are valid in every subset of complex numbers which is group with the addition and closed as to the multiplication. For example, $\langle Z,+, \cdot\rangle,<Q,+, \cdot\rangle,<R,+, \cdot\rangle$ and $<C,+, \cdot>$ are all rings.

In ring theory, a special subset of a ring is an ideal. Ideals generalize certain subsets of the integers. Ernest Eduard Kummer (1810-1893) was the person who introduced the notion of "ideal of complex number" in 1847, in his effort to retain the notion of unambiguously analysis in some rings of algebraic integers.

Definition 1.4 [4]

Let $R[x]$ and $S[x]$ be rings and $f: R[x] \rightarrow S[x]$ a mapping. Then f is called a homomorphism of rings if the following hold:
(i). $\quad f(a+b)=f(a)+f(b)$ for all $a, b \in R[x]$
(ii). $\quad f(a b)=f(a) f(b)$ for all $a, b \in R[x]$

If in addition $R[x]$ and $S[x]$ are rings with unities 1_{R} and 1_{S}, respectively, then we require that
(iii). $\quad f\left(1_{R}\right)=f\left(1_{S}\right)$

We will often drop this distinction and just write " 1 " and " 0 " even when more than one ring is involved. A homomorphism f is called an embedding if f is injective, and an isomorphism if f is bijective. A homomorphism from a ring $R[x]$ to itself is called an endomorphism, and an isomorphism from R to itself is called an automorphism.

Note: It follows from the definition that if $f: R[x] \rightarrow S[x]$ is a homomorphism, then the image of the zero element in $R[x]$ is the zero element in $S[x]$, i.e. $f\left(0_{R}\right)=0_{S}$, because for any r we have $f(r)=f\left(r+0_{R}\right)=f(r)+f\left(0_{R}\right)$ and hence $f\left(0_{R}\right)=0_{s}$.

Definition 1.5 [4]

Let $f: R[x] \rightarrow S[x]$ be a homomorphism of rings. We define the kernel of f by setting

$$
\operatorname{ker}(f)=\{a \in R[x] \mid f(a)=0\}
$$

Lemma 1.1 [4]

Let $f: R[x] \rightarrow S[x]$ be a homomorphism of rings. The $\operatorname{Ker}(f)$ is a proper ideal of $R[x]$.

Proof. $\operatorname{Ker}(f) \neq \emptyset$ since $0 \in \operatorname{Ker}(f)$. If $a, b \in \operatorname{Ker}(f)$, then $f(a)=f(b)=0$, hence $f(a+b)=f(a)+f(b)=0+0=0$, and thus $a+b \in \operatorname{Ker}(f)$. If $a \in$ $\operatorname{Ker}(f)$ and $r \in R$, then $f(a)=0$, hence

$$
f(a r)=f(a) f(r)=0 f(r)=0
$$

and thus ar $\in \operatorname{Ker}(f)$. The ideal $\operatorname{Ker}(f)$ is proper since $f\left(1_{R}\right)=1_{S} \neq 0$ and thus $1_{R} \notin \operatorname{Ker}(f)$. \square

Definition 1.6 [2]

A no-empty subset I of a ring $R[x]$ is called ideal of $R[x]$, if the following are valid:
(i). $\quad a-b \in I$, for all $a, b \in I$, and
(ii). $r a \in I$, and $a r \in I$, for all $r \in R$, and $a \in I$

If instead of relations $r a \in I$, and $a r \in I$, is valid only $r a \in I$, for all $r \in R[x]$, and $a \in I$, then I is called left ideal of $R[\mathrm{x}]$. Respectively, if is valid only the relation ar $\in I$, for all $r \in R[x]$, and $a \in I$, then I is called right ideal of $R[x]$.

If $I=\{0\}$ is called trivial and if $I \neq R[x]$ is called proper.

Before the notion of what a basis is, we will need some other notions first. The most important notion is that of linear independence.

Definition 1.7 [3]

Let $v_{1}, v_{2}, \ldots, v_{n}$ elements of k-vector space V. Linear relation of $v_{1}, v_{2}, \ldots, v_{n}$ is a relation

$$
\begin{equation*}
k_{1} v_{1}+k_{2} v_{2}+\cdots+k_{n} v_{n}=0 \tag{1.1}
\end{equation*}
$$

where $k_{1}, k_{2}, \ldots, k_{n} \in F$.
The $v_{1}, v_{2}, \ldots, v_{n}$ are called linearly independent if there exists no relation between them, except the trivial, where all coefficients k_{i} are zero. Equivalents $v_{1}, v_{2}, \ldots, v_{n}$ are linearly independent if from a linear relation (1.1) we conclude that $k_{i}=0$, for $i=1,2, \ldots, n$

$$
k_{1} v_{1}+k_{2} v_{2}+\cdots+k_{n} v_{n}=0 \Leftrightarrow k_{1}=k_{2}=\cdots=k_{n}=0 .
$$

Example 1.2

A. Elements $(1,0)$ and $(0,1)$ of \mathbb{R}-vector space \mathbb{R}^{2} is linearly independent, since if

$$
k_{1}(1,0)+k_{2}(0,1)=(0,0) \Rightarrow\left(k_{1}, k_{2}\right)=(0,0) \Rightarrow k_{1}=k_{2}=0
$$

B. In k-vector space F^{n} denote

$$
e_{1}=(1,0,0, \ldots, 0), e_{2}=(0,1,0, \ldots, 0), \ldots, e_{n}=(0,0, \ldots, 0,1)
$$

The elements $e_{1}, e_{2}, \ldots, e_{n}$ are linearly independent since if

$$
\begin{gathered}
k_{1} e_{1}+k_{2} e_{2}+\cdots+k_{n} e_{n}=(0,0, \ldots, 0) \Rightarrow\left(k_{1}, k_{2}, \ldots, k_{n}\right)=(0,0, \ldots, 0) \\
\Rightarrow k_{1}=k_{2}=\cdots=0
\end{gathered}
$$

We also observe that, for the random element $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \epsilon F^{n}$, is valid that

$$
\left(a_{1}, a_{2}, \ldots, a_{n}\right)=a_{1} e_{1}+a_{2} e_{2}+\cdots+a_{n} e_{n}
$$

Consequently, $F^{n}=S\left(\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}\right)$, where $S(X)$: the space spanned by the set of X.

Definition 1.8 [3]

Basis of a k-vector space V is called a linearly independent generating set of V and it is denoted by B, namely

$$
B \text { basis of } V \Leftrightarrow V=S(B) \text { and } B \text { is linearly independent }
$$

Example 1.3

A. The set $B=\left\{e_{1}, e_{2}\right\}$ where $e_{1}=(1,0)$ and $e_{2}=(0,1)$ is a spanning set of \mathbb{R}^{2}. It is also linearly independent for the only solution of the vector equation $c_{1} e_{1}+$ $c_{2} e_{2}=0$ is the trivial solution. Therefore, B is a basis for \mathbb{R}^{2}. It is called the standard basis for \mathbb{R}^{2}.
B. The elements $x, x^{2}, \ldots x^{n}, \ldots$ of $R[x]$ are a basis of k-vector space $R[x]$. The set $\left\{x, x^{2}, \ldots x^{n}, \ldots\right\}$ of $R[x]$ is linearly independent (since $k_{1} x^{i 1}+$ $k_{2} x^{i 2}+\cdots+k_{s} x^{i s}=0$ then $k_{j}=0,1 \leq j \leq s$ namely every finite subset of $\left\{x, x^{2}, \ldots x^{n}, \ldots\right\}$ is linearly independent) and every polynomial $P(x)=a_{0}+a_{1} x+$ $\cdots+a_{n} x^{n}$ belongs to $S(x)$.

1.2 Monomial Ordering

Before we introduce the notion of monomial ordering we should know the form of a polynomial with more than one variable. Below is given first the definition of polynomials of one and then of n variables.

Definition 1.9 [1]

Let $R[x]$ a ring. A polynomial $f(x)$ with coefficients in $R[x]$ is an infinity typical sum

$$
\begin{equation*}
\sum_{i=0}^{\infty} a_{i} x^{i}=a_{0}+a_{1} x^{1}+\cdots+a_{n} x^{n}+\cdots \tag{1.2}
\end{equation*}
$$

where $a_{i} \in R[x]$ and $a_{i}=0$ except for finite range of values of i. The a_{i} are coefficients of $f(x)$. If for some $i>0$ is valid $a_{i} \neq 0$, the largest of them is called degree of $f(x)$. If there exists no such a value, then we say that $f(x)$ has zero degree.

Definition 1.10 [10]
A monomial is a product of powers of variables with nonnegative integer exponents, or, in other words, a product of variables, possibly with repetitions.

The constant 1 is a monomial, being equal to the empty product and x^{0} for any variable x is considered, this means that a monomial is either 1 or a power x^{n} of x, with n a positive integer. If several variables are considered, say, x, y, z then each can be given an exponent, so that any monomial is of the form $x^{a} y^{b} z^{c}$ with a, b, c nonnegative integers.

Every monomial has a representation of the form $a x_{1}{ }^{\beta_{1}} x_{2}{ }^{\beta_{2}} \ldots x_{n}{ }^{\beta_{n}}\left(a \in F, \beta \in \mathbb{N}^{n}\right)$.

Definition 1.11 [5]
We consider polynomials $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ in n variables with coefficients in F. Such polynomials are finite sums of the form $a x_{1}{ }^{\beta_{1}} x_{2}{ }^{\beta_{2}} \ldots x_{n}{ }^{\beta_{n}}$, where $a \in F$, and $\beta_{i} \in \mathbb{N}$, $i=1, \ldots, n$. We call $x_{1}{ }^{\beta_{1}} x_{2}{ }^{\beta_{2}} \ldots x_{n}{ }^{\beta_{n}}$ a power product.

Example 1.4

The $f=x_{1}{ }^{3}+x_{2}{ }^{2}+1$ and $g=x_{1}{ }^{2}-4 x_{2}+8 x_{1} x_{3}$ are polynomials in n variables.

The basic of $R\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, which is a k-vector space, is the set, \mathbb{T}^{n}, of all power products,

$$
\begin{equation*}
\mathbb{T}^{n}=\left\{x_{1}{ }^{\beta_{1}} x_{2}{ }^{\beta_{2}} \ldots x_{n}{ }^{\beta_{n}} \mid \beta_{i} \in \mathbb{N}, i=1, \ldots, n\right\} \tag{1.3}
\end{equation*}
$$

Sometimes we will denote $x_{1}{ }^{\beta_{1}} x_{2}{ }^{\beta_{2}} \ldots x_{n}{ }^{\beta_{n}}$ by x^{β}, where $\beta=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{n}\right) \in \mathbb{N}^{v}$.

Definition 1.12 [9]

The degree of an element $m=x_{1}{ }^{\beta_{1}} x_{2}{ }^{\beta_{2}} \ldots x_{n}{ }^{\beta_{n}}$ in a polynomial ring $R\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ is

$$
\begin{equation*}
\operatorname{deg}(m)=\beta_{1}+\beta_{2}+\cdots+\beta_{n} \tag{1.4}
\end{equation*}
$$

The degree of a non-zero polynomial $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum a_{\beta_{1}, \beta_{2}, \ldots, \beta_{n}} x_{1}{ }^{\beta_{1}} x_{2}{ }^{\beta_{2}} \ldots x_{n}{ }^{\beta_{n}}$ equals

$$
\begin{equation*}
\operatorname{deg}(f)=\max \left\{\operatorname{deg}\left(x_{1}{ }^{\beta_{1}} x_{2}{ }^{\beta_{2}} \ldots x_{n}{ }^{\beta_{n}}\right) a_{\beta_{1}, \beta_{2}, \ldots, \beta_{n}} \neq 0\right\} \tag{1.5}
\end{equation*}
$$

To introduce the notion of Gröbner bases and the algorithm which helps us to find them, we should be able to compare any two power products.

The orders in the linear and one variable cases are used to define a division (or reduction) algorithm.

Definition 1.13 [5]

By a term order on \mathbb{T}^{n} we mean a total order $<$ on \mathbb{T}^{n} satisfying the following two conditions:
(i). $\quad 1<x^{\beta}$ for all $x^{\beta} \in \mathbb{T}^{n}, x^{\beta} \neq 1$
(ii). If $x^{a}<x^{\beta}$, then $x^{a} x^{\gamma} \leq x^{\beta} x^{\gamma}$, for all $x^{\gamma} \in \mathbb{T}^{n}$.

Proposition 1.1 [5]

For $x^{a}, x^{\beta} \in \mathbb{T}^{n}$, if x^{a} divided x^{β} then $x^{a} \leq x^{\beta}$.

Proof. By assumption there is an $x^{\gamma} \in \mathbb{T}^{n}$ such that $x^{\beta}=x^{a} x^{\gamma}$. By condition (i) in Definition 1.11 we have $x^{\gamma} \geq 1$ and so by condition (ii) we have $x^{\beta}=x^{a} x^{\gamma} \geq x^{a}$, as desired.

To compare any two power products, the order must be a total order, that is, given any $x^{a}, x^{\beta} \in \mathbb{T}^{n}$, exactly one of the following relations must hold

$$
\begin{equation*}
x^{a}<x^{\beta} \text { or } x^{a}>x^{\beta} \text { or } x^{a}=x^{\beta} \tag{1.6}
\end{equation*}
$$

Also, for any $x^{a}, x^{\beta}, x^{\gamma} \in \mathbb{T}^{n}$ we have:

$$
\begin{equation*}
\text { if } x^{a}<x^{\beta} \text { and } x^{\beta}<x^{\gamma} \text { then } x^{a}<x^{\gamma} \tag{1.7}
\end{equation*}
$$

If we want the reduction to be finite, we need that order be a well-ordering, that is, there is no infinite descending chain $x^{\beta_{1}}>x^{\beta_{2}}>\cdots$ in \mathbb{T}^{n}.

The most frequently used descriptions of ordering have at most two defining conditions: a degree and a (normal or reverse) lexicographical comparison. The most famous are:
a) Lexicographic order
b) Reverse lexicographic order
c) Degree lexicographic order
d) Degree reverse lexicographic order

- Let $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $\beta=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{n}\right)$ be vectors belonging to \mathbb{Z}_{+}^{n}. We define the total order $<_{\text {lex }}$ on \mathbb{T}^{n} by setting $x^{a}<_{\text {lex }} x^{\beta}$ if either (i) $\sum_{i=1}^{n} a_{i}<\sum_{i=1}^{n} \beta_{i}$, or (ii) $\sum_{i=1}^{n} a_{i}=\sum_{i=1}^{n} \beta_{i}$ and the left most non-zero component of the vector $a-\beta$ is negative. It follows that $<_{l e x}$ is a monomial order on $R\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ which is called the lexicographic order on $R\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ included by the ordering $x_{1}>x_{2}>\cdots>x_{n}$.
- Let $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $\beta=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{n}\right)$ be vectors belonging to \mathbb{Z}_{+}^{n}. We define the total order $<_{\text {rev }}$ on \mathbb{T}^{n} by setting $x^{a}<_{\text {rev }} x^{\beta}$ if either (i) $\sum_{i=1}^{n} a_{i}<\sum_{i=1}^{n} \beta_{i}$, or (ii) $\sum_{i=1}^{n} a_{i}=\sum_{i=1}^{n} \beta_{i}$ and the right most non-zero component of the vector $a-\beta$ is negative. It follows that $<_{\text {rev }}$ is a monomial order on $R\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ which is called the reverse lexicographic order on $R\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ included by the ordering $x_{1}>x_{2}>\cdots>x_{n}$.
- Let $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $\beta=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{n}\right)$ be vectors belonging to \mathbb{Z}_{+}^{n}. We define the total order $<_{\text {deglex }}$ on \mathbb{T}^{n} by setting $x^{a}<_{\text {deglex }} x^{\beta}$ if either (i) $\sum_{i=1}^{n} a_{i}<\sum_{i=1}^{n} \beta_{i}$, or (ii) $\sum_{i=1}^{n} a_{i}=\sum_{i=1}^{n} \beta_{i}$ and $x^{a}<x^{\beta}$ with respect to
lexicographic order with $x_{1}>x_{2}>\cdots>x_{n}$. It follows that $<_{\text {deglex }}$ is a monomial order on $R\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ which is called the degree reverse lexicographic order on $R\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ included by the ordering $x_{1}>x_{2}>$ $\cdots>x_{n}$.
- Let $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $\beta=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{n}\right)$ be vectors belonging to \mathbb{Z}_{+}^{n}. We define the total order $<_{\text {degrevlex }}$ on \mathbb{T}^{n} by setting $x^{a}<_{\text {degrevlex }} x^{\beta}$ if either (i) $\sum_{i=1}^{n} a_{i}<\sum_{i=1}^{n} \beta_{i}$, or (ii) $\sum_{i=1}^{n} a_{i}=\sum_{i=1}^{n} \beta_{i}$ and $x^{a}<x^{\beta}$ the right most non-zero component of the vector $a-\beta$ is positive. It follows that $<_{\text {deglex }}$ is a monomial order on $R\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ which is called the degree reverse lexicographic order on $R\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ included by the ordering $x_{1}>x_{2}>\cdots>x_{n}$.

Example 1.5

A. Consider the polynomial

$$
p\left(x_{1}, x_{2}, x_{3}\right)=2 x_{1}^{2} x_{2}^{3}+5 x_{1} x_{2} x_{3}-7 x_{1}^{2} x_{3}^{3}
$$

We assume that $x_{1}>x_{2}>x_{3}$.
Let be $\alpha=(2,3,0), \beta=(1,1,1)$ and $\gamma=(2,0,3)$, so $\alpha-\beta=(1,2,-1), \beta-\gamma=(-1,1,-2), \alpha-\gamma=(0,3,-3)$ and $|\alpha|=5,|\beta|=3$ and $|\gamma|=5$.

- With respect to Lexicographic order , p is written in decreasing order as :

$$
p\left(x_{1}, x_{2}, x_{3}\right)=2 x_{1}^{2} x_{2}^{3}-7 x_{1}^{2} x_{3}^{3}+5 x_{1} x_{2} x_{3}
$$

Because the left-most non-zero entries of $\alpha-\beta$ and $\alpha-\gamma$ are positive, therefore $x_{1}^{2} x_{2}^{3}>_{\text {lex }} x_{1} x_{2} x_{3}$ and $x_{1}^{2} x_{2}^{3}>_{\text {lex }} x_{1}^{2} x_{3}^{3}$ respectively. But the left-most non-zero entry of $\beta-\gamma$ is negative, therefore $x_{1}^{2} x_{3}^{3}>_{\text {lex }} x_{1} x_{2} x_{3}$.

- With respect to Reverse lexicographic order , p is written in decreasing order as :

$$
p\left(x_{1}, x_{2}, x_{3}\right)=-7 x_{1}^{2} x_{3}^{3}+5 x_{1} x_{2} x_{3}+2 x_{1}^{2} x_{2}^{3}
$$

Because the right-most non-zero entries of $\alpha-\beta, \alpha-\gamma$ and $\beta-\gamma$ are negative, therefore $x_{1} x_{2} x_{3}>_{\text {revlex }} x_{1}^{2} x_{2}^{3}, x_{1}^{2} x_{3}^{3}>_{\text {revlex }} x_{1}^{2} x_{2}^{3}$ and $x_{1}^{2} x_{3}^{3}>_{\text {revlex }} x_{1} x_{2} x_{3}$ respectively.

- With respect to Degree lexicographic order, p is written in decreasing order as :

$$
p\left(x_{1}, x_{2}, x_{3}\right)=2 x_{1}^{2} x_{2}^{3}-7 x_{1}^{2} x_{3}^{3}+5 x_{1} x_{2} x_{3}
$$

Because $x_{1}^{2} x_{2}^{3}>_{\text {lex }} x_{1} x_{2} x_{3}, \quad x_{1}^{2} x_{2}^{3}>_{\text {lex }} x_{1}^{2} x_{2}^{3}, ~ x_{1}^{2} x_{3}^{3}>_{\text {lex }} x_{1} x_{2} x_{3}$ and $|\alpha|>|\beta|$, $|\alpha|=|\gamma|,|\beta|<|\gamma|$, therefore $x_{1}^{2} x_{2}^{3}>_{\text {deglex }} x_{1} x_{2} x_{3}, x_{1}^{2} x_{2}^{3}>_{\text {deglex }} x_{1}^{2} x_{3}^{3}$ and $x_{1}^{2} x_{3}^{3}>_{\text {deglex }} x_{1} x_{2} x_{3}$ respectively.

- With respect to Degree Reverse lexicographic ordering, p is written in decreasing order as :

$$
p\left(x_{1}, x_{2}, x_{3}\right)=2 x_{1}^{2} x_{2}^{3}-7 x_{1}^{2} x_{3}^{3}+5 x_{1} x_{2} x_{3}
$$

Because the right-most non-zero entries of $\alpha-\beta, \alpha-\gamma, \beta-\gamma$ are negative and $|\alpha|>|\beta|$, $|\alpha|=|\gamma|,|\beta|<|\gamma|$, therefore $x_{1}^{2} x_{2}^{3}>_{\text {degrevlex }} x_{1} x_{2} x_{3}, x_{1}^{2} x_{2}^{3}>_{\text {degrevlex }} x_{1}^{2} x_{3}^{3}$ and $x_{1}^{2} x_{3}^{3}>_{\text {degrevlex }} x_{1} x_{2} x_{3}$ respectively.
B. Consider the polynomial

$$
\mathrm{p}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1} x_{4}^{2}-3 x_{1} x_{2} x_{3}+8 x_{2} x_{4}^{3}
$$

We solve the exercise with $x_{1}>x_{2}>x_{3}>x_{4}$.
Let be $a=(1,0,0,2), \beta=(1,1,1,0)$ and $\gamma=(0,1,0,3)$, so $a-b=(0,-1,-1,2)$, $a-\gamma=(1,-1,0,-1)$ and $\beta-\gamma=(1,0,1,-3)$, and $|a|=3=|\beta|,|\gamma|=4$.

- With Lexicographic order, p is written in decreasing order as:

$$
\mathrm{p}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=-3 x_{1} x_{2} x_{3}+x_{1} x_{4}^{2}+8 x_{2} x_{4}^{3}
$$

Because $|a|=|\beta|,|a|<|\gamma|$ and $|\beta|<|\gamma|$, and the left-most non-zero component of the vector $a-\beta$ is negative and $\alpha-\gamma, \beta-\gamma$ is positive, therefore $x_{1} x_{2} x_{3}>_{\text {lex }} x_{1} x_{4}^{2}, x_{1} x_{4}^{2}>_{\text {lex }} x_{2} x_{4}^{3}$ and $x_{1} x_{2} x_{3}>_{\text {lex }} x_{2} x_{4}^{3}$ respectively.

- With Reverse lexicographic order, p is written in decreasing order as:

$$
\mathrm{p}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=-3 x_{1} x_{2} x_{3}+x_{1} x_{4}^{2}+8 x_{2} x_{4}^{3}
$$

Because $|a|=|\beta|,|a|<|\gamma|$ and $|\beta|<|\gamma|$, and the right-most non-zero component of the vector $a-\beta$ is positive and $\alpha-\gamma, \beta-\gamma$ is negative, therefore $x_{1} x_{2} x_{3}>_{\text {lex }} x_{1} x_{4}^{2}, x_{1} x_{4}^{2}>_{\text {lex }} x_{2} x_{4}^{3}$ and $x_{1} x_{2} x_{3}>_{\text {lex }} x_{2} x_{4}^{3}$ respectively .

- With Degree lexicographic order, p is written in decreasing order as:

$$
\mathrm{p}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=-3 x_{1} x_{2} x_{3}+x_{1} x_{4}^{2}+8 x_{2} x_{4}^{3}
$$

Because $|a|=|\beta|,|a|<|\gamma|$ and $|\beta|<|\gamma|$, and $x_{1} x_{2} x_{3}>_{\text {lex }} x_{1} x_{4}^{2}, x_{1} x_{4}^{2}>_{\text {lex }} x_{2} x_{4}^{3}$, $x_{1} x_{2} x_{3}>_{\text {lex }} x_{2} x_{4}^{3}$, therefore $x_{1} x_{2} x_{3}>_{\text {deglex }} x_{1} x_{4}^{2}, \quad x_{1} x_{4}^{2}>_{\text {deglex }} x_{2} x_{4}^{3} \quad$ and $x_{1} x_{2} x_{3}>_{\text {deglex }} x_{2} x_{4}^{3}$ respectively.

- With Degree Reverse lexicographic order, p is written in decreasing order as:

$$
\mathrm{p}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=-3 x_{1} x_{2} x_{3}+x_{1} x_{4}^{2}+8 x_{2} x_{4}^{3}
$$

Because $|a|=|\beta|,|a|<|\gamma|$ and $|\beta|<|\gamma|$, and the right-most non-zero component of the vector $a-\beta$ is positive and $\alpha-\gamma, \beta-\gamma$ is negative, therefore $x_{1} x_{2} x_{3}>_{\text {degrevlex }} x_{1} x_{4}^{2}, \quad x_{1} x_{4}^{2}>_{\text {degrevlex }} x_{2} x_{4}^{3} \quad$ and $\quad x_{1} x_{2} x_{3}>_{\text {degrevlex }} x_{2} x_{4}^{3}$ respectively.

Definition 1.14 [9]

We call an ordering a degree ordering if the most important criterion for comparison is the degree of the monomials. In the sequel we assume that a monomial order for \mathbb{T}^{n} has been fixed.

Definition 1.15 [6]
Let be a non-zero polynomial in $R\left[x_{1}, x_{2}, \ldots, x_{n}\right]$.
One can write:

$$
\begin{equation*}
f=\sum_{i=1}^{r} a_{i} m_{i} \tag{1.8}
\end{equation*}
$$

with $a_{i} \in F-\{0\}, m_{i} \in \mathbb{T}^{n}$ and $m_{1}>\cdots>m_{r}$.

- the leading term m_{1} of f is denoted by $l t(f)$
- the leading coefficient a_{1} of f is denoted by $l c(f)$ and
- the leading monomial $a_{1} m_{1}$ is denoted by $\operatorname{lm}(f)$.

Example 1.6

A. Consider the polynomial which is used in Example 1.5A:

$$
\mathrm{p}\left(x_{1}, x_{2}, x_{3}\right)=2 x_{1}^{2} x_{2}^{3}+5 x_{1} x_{2} x_{3}-7 x_{1}^{2} x_{3}^{3}
$$

we prove that:

- with respect to lexicographic ordering, p is written in decreasing order as:

$$
p\left(x_{1}, x_{2}, x_{3}\right)=2 x_{1}^{2} x_{2}^{3}-7 x_{1}^{2} x_{3}^{3}+5 x_{1} x_{2} x_{3}
$$

and therefore it can be seen from the above definition that :
i. $\quad l t(p)=x_{1}^{2} x_{2}^{3}$
ii. $\quad l c(p)=2$
iii. $\quad \operatorname{lm}(p)=2 x_{1}^{2} x_{2}^{3}$

- with respect to Reverse lexicographic ordering, p is written in decreasing order as:

$$
p\left(x_{1}, x_{2}, x_{3}\right)=-7 x_{1}^{2} x_{3}^{3}+5 x_{1} x_{2} x_{3}+2 x_{1}^{2} x_{2}^{3}
$$

i. $\quad l t(p)=x_{1}^{2} x_{3}^{3}$
ii. $\quad l c(p)=-7$
iii. $\quad \operatorname{lm}(p)=-7 x_{1}^{2} x_{3}^{3}$

- with respect to Degree lexicographic ordering, p is written in decreasing order as:

$$
p\left(x_{1}, x_{2}, x_{3}\right)=2 x_{1}^{2} x_{2}^{3}-7 x_{1}^{2} x_{3}^{3}+5 x_{1} x_{2} x_{3}
$$

i. $\quad l t(p)=x_{1}^{2} x_{2}^{3}$
ii. $\quad l c(p)=2$
iii. $\quad \operatorname{lm}(p)=2 x_{1}^{2} x_{2}^{3}$

- with respect to Degree Reverse lexicographic ordering, p is written in decreasing order as:

$$
p\left(x_{1}, x_{2}, x_{3}\right)=2 x_{1}^{2} x_{2}^{3}-7 x_{1}^{2} x_{3}^{3}+5 x_{1} x_{2} x_{3}
$$

i. $\quad l t(p)=x_{1}^{2} x_{2}^{3}$
ii. $\quad l c(p)=2$
iii. $\quad \operatorname{lm}(p)=2 x_{1}^{2} x_{2}^{3}$
B. Consider the polynomial which is used in Example 1.5B:

$$
\mathrm{p}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1} x_{4}^{2}-3 x_{1} x_{2} x_{3}+8 x_{2} x_{4}^{3}
$$

we prove that:

- with respect to Lexicographic ordering, p is written in decreasing order as:

$$
\mathrm{p}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=-3 x_{1} x_{2} x_{3}+x_{1} x_{4}^{2}+8 x_{2} x_{4}^{3}
$$

and therefore it can be seen from the above definition that :
i. $\quad l t(p)=x_{1} x_{2} x_{3}$
ii. $\quad l c(p)=-3$
iii. $\quad \operatorname{lm}(p)=-3 x_{1} x_{2} x_{3}$

- with respect to Reverse lexicographic ordering, p is written in decreasing order as:

$$
\mathrm{p}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=-3 x_{1} x_{2} x_{3}+x_{1} x_{4}^{2}+8 x_{2} x_{4}^{3}
$$

i. $\quad l t(p)=x_{1} x_{2} x_{3}$
ii. $\quad l c(p)=-3$
iii. $\quad \operatorname{lm}(p)=-3 x_{1} x_{2} x_{3}$

- with respect to Degree lexicographic ordering, p is written in decreasing order as:

$$
\mathrm{p}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=-3 x_{1} x_{2} x_{3}+x_{1} x_{4}^{2}+8 x_{2} x_{4}^{3}
$$

i. $\quad l t(p)=x_{1} x_{2} x_{3}$
ii. $\quad l c(p)=-3$
iii. $\quad \operatorname{lm}(p)=-3 x_{1} x_{2} x_{3}$

- with respect to Degree Reverse lexicographic ordering, p is written in decreasing order as:

$$
\mathrm{p}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=-3 x_{1} x_{2} x_{3}+x_{1} x_{4}^{2}+8 x_{2} x_{4}^{3}
$$

i. $\quad l t(p)=x_{1} x_{2} x_{3}$
ii. $\quad l c(p)=-3$
iii. $\quad \operatorname{lm}(p)=-3 x_{1} x_{2} x_{3}$

Definition 1.16 [7]

Let I be an ideal of $R\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. The initial ideal of I, denoted by $\operatorname{in}(I)$, is given by

$$
\begin{equation*}
\operatorname{in}(I)=(\{l t(f) \mid 0 \neq f \in I\}) \tag{1.9}
\end{equation*}
$$

1.3 Division algorithm

Before we define Gröbner bases, we have to deal with the division algorithm for polynomials in more than one variables.

Firstly, we will see Dickson's lemma, which is important because it will justify our choice of \mathbb{T}^{n} to be a finite set, in our examples.

Lemma 1.1 [9]

Every monomial ideal in $R\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ is finitely generated.
Proof. Let $S=\mathbb{T}^{n}$. We proceed by introduction on n. Since in $R[x]$ is principal, the lemma is true for $n=1$. Suppose it is true for $n-1$ variables, and let a be a monomial ideal in $R\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. Let

$$
b_{j}=\left(a=<x_{n}^{j}>\right) \cap R\left[x_{1}, x_{2}, \ldots, x_{n-1}\right]=<S_{j}>.
$$

Since b_{j} is an ideal in $R\left[x_{1}, x_{2}, \ldots, x_{n-1}\right]$, we can choose S_{j} to be finite. We have $b_{0} \subseteq b_{1} \subseteq \cdots$. It follows easily that $\cup b_{j}$ is an ideal b in $R\left[x_{1}, x_{2}, \ldots, x_{n-1}\right]$ and hence finitely generated $b=<S>$. If $m \in a$ is a monomial then $m=m^{\prime} x_{n}^{k}$ for some monomial $m \in R\left[x_{1}, x_{2}, \ldots, x_{n-1}\right]$ and some k.

Since $m^{\prime} x_{n}^{k} \in a$ we get $m^{\prime} \in a:<x_{n}^{k}>$, so $m \in<x_{n}^{k} S_{k}>$. Thus $S^{\prime}=S_{0} \cup x_{n} S_{1} \cup$ $x_{n}^{2} S_{2} \cup \ldots$ is a generating set for a. But for some r we have that $S_{k}=S_{r}$ if $k \geq r$, so $S_{0} \cup x_{n} S_{1} \cup \ldots \cup x_{n}^{r} S_{r}$ is a (finite) generating set for a.

Definition 1.17 [5]

Given f, g, h in $R\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ with $g \neq 0$, we say that f reduces to h modulo g in one step, written $f \xrightarrow{g} h$, if and only if $l t(g)$ divides a non-zero term X that appears in f and

$$
\begin{equation*}
h=f-\frac{X}{\operatorname{lm}(g)} \tag{1.10}
\end{equation*}
$$

Example 1.7

Let $f=x^{2} y+4 x y-3 y^{2}, g=2 x+4 y+1$. Also, let the order be lexicographic with $x>y$. We have $l t(f)=x^{2} y$ and $l t(g)=x$.

- $l t(g) / l t(f) \Rightarrow f=\frac{x y}{2} g+p_{1}$, where $p_{1}=-2 x y^{2}+\frac{7}{2} x y-3 y^{2}$
- $\operatorname{lt}(g) / \operatorname{lt}\left(p_{1}\right) \Rightarrow f=\frac{x y}{2} g-y^{2} g+p_{2}$, where $p_{2}=\frac{7}{2} x y+4 y^{3}-2 y^{2}$
- $l t(g) / l t\left(p_{2}\right) \Rightarrow f=\frac{x y}{2} g-y^{2} g+\frac{7}{4} g+p_{3}$, where $p_{3}=4 y^{3}-9 y^{2}-\frac{7}{4} y$
- $l t(g)$ doesn't divide $l t\left(p_{3}\right)$

So, we have

$$
f \stackrel{g}{\rightarrow}-2 x y^{2}+\frac{7}{2} x y-3 y^{2} \xrightarrow{g} \frac{7}{2} x y+4 y^{3}-2 y^{2} \xrightarrow{g} 4 y^{3}-9 y^{2}-\frac{7}{4} y
$$

In the multivariable case we may have to divide by more than one polynomial at a time, and so we extend the process of reduction defined above to include this more general setting.

Definition 1.18 [5]

Let f, h and f_{1}, \ldots, f_{s} be polynomials in $R\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, with $f_{i} \neq 0(1 \leq i \leq s)$, and let $F=\left\{f_{1}, \ldots, f_{s}\right\}$. We say that f reduces to h modulo F, denoted

$$
f \stackrel{F}{\rightarrow}_{+} h,
$$

if and only if there exist a sequence of indices $i_{1}, \ldots, i_{t} \in\{1, \ldots, s\}$ and a sequence of polynomial $h_{1}, \ldots, h_{t} \in R\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ such that

$$
f \xrightarrow{f_{i_{1}}} h_{1} \xrightarrow{f_{i_{2}}} h_{2} \xrightarrow{f_{i_{3}}} . . \xrightarrow{f_{i_{t-1}}} h_{t-1} \xrightarrow{f_{i_{t}}} h
$$

Example 1.8

Let $f=x y^{2}+2 x, f_{1}=x y-y, f_{2}=y^{2}-1$. Also, let the order be lexicographic with $x>y$. We have $l t(f)=x y^{2}, l t\left(f_{1}\right)=x y$ and $l t\left(f_{2}\right)=y^{2}$.

- $\operatorname{lt}\left(f_{1}\right) / l t(f) \Rightarrow f=y f_{1}+p_{1}$, where $p_{1}=y^{2}+2 x$
- $l t\left(f_{1}\right)$ doesn't divide $\operatorname{lt}\left(p_{1}\right)$, while
- lt $\left(f_{2}\right) / l t\left(p_{1}\right) \Rightarrow f=y f_{1}+f_{2}+p_{2}$, where $p_{2}=2 x+1$
- None of $l t\left(f_{i}\right)$ doesn't divide $l t\left(p_{2}\right)$, so $p_{2}=2 x+1$.

Eventually,

$$
f=y f_{1}+f_{2}+2 x+1
$$

The above process according to Definition 1.18 can be described as follows:

$$
f \xrightarrow{f_{1}} x y^{2}+2 x \xrightarrow{f_{2}} 2 x+1
$$

It's important to say that quotients and remainders of division depending as much on the monomial ordering as the order of polynomials.

Now we will present the Generalized Division Algorithm:

Theorem 1.1 [7]

Let $S=R\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ denote the polynomial ring in n variables over a field F and fix a monomial order $<$ on S. Let g_{1}, \ldots, g_{s} be non-zero polynomial of S. Then, given a polynomial $0 \neq f \in S$, there exist polynomials f_{1}, \ldots, f_{s} and f^{\prime} of S with

$$
\begin{equation*}
f=f_{1} g_{1}+f_{2} g_{2}+\cdots+f_{s} g_{s}+f^{\prime} \tag{1.11}
\end{equation*}
$$

such that the following conditions are satisfied:
(i). if $f^{\prime} \neq 0$ and if $u \in \operatorname{supp}\left(f^{\prime}\right)$, where $\operatorname{supp}\left(f^{\prime}\right)=\left\{u \in \mathbb{T}^{n}: a_{u} \neq 0\right\}$, then none of the divides u, i.e. no monomial $u \in \operatorname{supp}\left(f^{\prime}\right)$ belongs to $\left(l t\left(g_{1}\right), \ldots, l t\left(g_{s}\right)\right.$;
(ii). if $f_{i} \neq 0$, then

$$
l t(f) \geq l t\left(f_{i} g_{i}\right)
$$

The right-hand side of equation (1.11) is said to be a standard expression for f with respect to g_{1}, \ldots, g_{s} and the polynomial f^{\prime} is said to be a remainder of f with respect to g_{1}, \ldots, g_{s}.

To prove the Theorem 1.1, we need the following lemma:

Lemma 1.2 [7]

Let be a monomial order on $S=R\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. Then, for any monomial u of S, there is no infinite descending sequence of the form

$$
\begin{equation*}
\ldots<u_{2}<u_{1}<u_{0}=u \tag{1.12}
\end{equation*}
$$

Proof. Suppose, on the contrary, that one has an infinite descending sequence (1.12) and write M for the set of monomials $\left\{u_{0}, u_{1}, \ldots\right\}$. It follows from Dickson's lemma (Lemma 1.1) that $M^{\min }$ is a finite set, say $M^{\min }=\left\{u_{i 1}, \ldots, u_{i s}\right\}$ with $i_{1}<i_{2}<\cdots<$ i_{s}. Then the monomial $u_{i_{s}+1}$ is divided by $u_{i j}$ for some $1 \leq j \leq s$. Thus $u_{i_{j}}<u_{i_{s+1}}$, which contradicts $i_{j}<i_{s+1} . \square$

Now, we are ready to prove Theorem 1.1:
Proof. Let $I=\left(l t\left(g_{1}\right), \ldots, l t\left(g_{s}\right)\right)$. If none of the monomials $u \in \operatorname{supp}(f)$ belongs to I and write respect to $<$ among the monomials $u \in \operatorname{supp}(f)$ belonging to I. Let, say, $l t\left(g_{i_{0}}\right)$ divide u_{0} and $w_{0}=u_{0} / l t\left(g_{i_{0}}\right)$.
We rewrite

$$
f=c_{0}^{\prime} c_{i_{0}}^{-1} w_{0} g_{i_{0}}+h_{1},
$$

where c_{0}^{\prime} is the coefficient of u_{0} in f and $c_{i_{0}}$ is that of $l t\left(g_{i_{0}}\right)$ in $g_{i_{0}}$. One has

$$
\operatorname{lt}\left(w_{0} g_{i_{0}}\right)=w_{0} l t\left(g_{i_{0}}\right)=u_{0} \leq l t(f)
$$

If either $h_{1}=0$ or, in case of $h_{1} \neq 0$, none of the monomials $u \in \operatorname{supp}\left(h_{1}\right)$ belongs to I, then $f=c_{0}^{\prime} c_{i_{0}}^{-1} w_{0} g_{i_{0}}+h_{1}$ is a standard expression of f with respect to g_{1}, \ldots, g_{s} and h_{1} is a remainder of f.
If a monomial of $\operatorname{supp}\left(h_{1}\right)$ belongs to I and if u_{1} is the monomial which is biggest with respect to $<$ among the monomials $u \in \operatorname{supp}\left(h_{1}\right)$ belonging to I, then one has

$$
u_{0}>u_{1}
$$

In fact, if a monomial u with $u>u_{0}\left(=\operatorname{lm}\left(w_{0} g_{i_{0}}\right)\right)$ belongs to $\operatorname{supp}\left(h_{1}\right)$, then u must belong to $\operatorname{supp}(f)$. This is impossible. Moreover, u_{0} itself cannot belong to $\operatorname{supp}\left(h_{1}\right)$.
Let, say, $l t\left(g_{i_{1}}\right)$ divide u_{1} and $w_{1}=u_{1} / l t\left(g_{i_{1}}\right)$. Again, we rewrite

$$
f=c_{0}^{\prime} c_{i_{0}}^{-1} w_{0} g_{i_{0}}+c_{1}^{\prime} c_{i_{1}}^{-1} w_{1} g_{i_{1}}+h_{2}
$$

where c_{1}^{\prime} is the coefficient of u_{1} in h_{1} and $c_{i_{1}}$ is that of $l t\left(g_{i_{1}}\right)$ in $g_{i_{1}}$. One has

$$
l t\left(w_{1} g_{i_{1}}\right)<l t\left(w_{0} g_{i_{0}}\right) \leq l t(f) .
$$

Continuing these procedures yields the descending sequence

$$
u_{0}>u_{1}>u_{2}>\cdots
$$

Lemma 1.2 thus guarantees that these procedures will stop after a finite number of steps, say N steps, and we obtain an expression

$$
f=\sum_{q=0}^{N-1} c_{q}^{\prime} c_{i_{q}}^{-1} w_{q} g_{i_{q}}+h_{N}
$$

where either $h_{N}=0$ or, in case $h_{N} \neq 0$, none of the monomials $u \in \operatorname{supp}\left(h_{N}\right)$ belongs to I, and where

$$
l t\left(w_{q} g_{i_{q}}\right)<\cdots<l t\left(w_{0} g_{i_{0}}\right) \leq l t(f)
$$

Thus, by letting $\sum_{i=1}^{S} f_{i} g_{i}=\sum_{q=0}^{N-1} c_{q}^{\prime} c_{i_{q}}^{-1} w_{q} g_{i_{q}}$ and $f^{\prime}=h_{N}$, we obtain an expression $f=\sum_{i=1}^{s} f_{i} g_{i}+f^{\prime}$ satisfying the conditions (i) and (ii), as desired.

Example 1.9

Let $f=x^{2}+y^{2}-1, f_{1}=x+y$ and $f_{2}=y+1$. Als, let the order be lexicographic with $x>y$. We have $l t(f)=x^{2}, \operatorname{lt}\left(f_{1}\right)=x$ and $l t\left(f_{2}\right)=y$.

- $l t\left(f_{1}\right) / l t(f) \Rightarrow f=x f_{1}+p_{1}$, where $p_{1}=-x y+y^{2}-1$
- $\operatorname{lt}\left(f_{1}\right) / \operatorname{lt}\left(p_{1}\right) \Rightarrow f=x f_{1}-y f_{1}+p_{2}$, where $p_{2}=2 y^{2}-1$
- lt $\left(f_{1}\right)$ doesn't divide $l t\left(p_{2}\right)$, while
- $l t\left(f_{2}\right) / \operatorname{lt}\left(p_{2}\right) \Rightarrow f=x f_{1}-y f_{1}+2 y f_{2}+p_{3}$, where $p_{3}=-2 y-1$
- $l t\left(f_{2}\right) / l t\left(p_{3}\right) \Rightarrow f=x f_{1}-y f_{1}+2 y f_{2}-2 f_{2}+p_{4}$, where $p_{4}=1$

Eventually,

$$
\begin{gathered}
f=x f_{1}-y f_{1}+2 y f_{2}-2 f_{2}+1, \\
\\
f \stackrel{\text { or }}{f_{1}}-x y+y^{2}-1 \xrightarrow{f_{1}} 2 y^{2}-1 \xrightarrow{f_{2}}-2 y-1 \xrightarrow{f_{2}} 1
\end{gathered}
$$

1.4 Gröbner bases

Gröbner bases were introduced in 1965, together with an algorithm to compute them (Buchberger; algorithm), by Bruno Buchberger in his PhD thesis. He named them after his advisor Wolfgang Gröbner. In 2007, Buchberger received the Association for Computing Machinery's Paris Kanellakis Theory and Practice Award for his work. An analogous concept for local rings was developed independently by Heisuke Hirokana in 1964 who named them standard bases.

Definition 1.19 [6]
Let $I \neq(0)$ be an ideal of $R\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ and let $G=\left\{g_{1}, g_{2}, \ldots, g_{s}\right\}$ be a subset of I. The set G is called a Gröbner basis of I if

$$
\begin{equation*}
\operatorname{in}(I)=\left(\operatorname{lt}\left(g_{1}\right), l t\left(g_{2}\right), \ldots, \operatorname{lt}\left(g_{s}\right)\right) \tag{1.13}
\end{equation*}
$$

where $g_{1}, g_{2}, \ldots, g_{s}$ are ordered with respect to a common ordering.

Theorem 1.2 [5]

Let I be a non-zero ideal of $R\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. The following statements are equivalent for a set of non-zero polynomials $G=\left\{g_{1}, g_{2}, \ldots, g_{s}\right\} \subseteq I$
(i). G is a Gröbner basis for I
(ii). $f \in I$ if and only if $f \xrightarrow{G} 0$
(iii). $f \in I$ if and only if $f=\sum_{i=1}^{S} h_{i} g_{i}$ with $l t(f)=\max _{1 \leq i \leq t}\left(l t\left(h_{i}\right) l t\left(g_{i}\right)\right)$
(iv). $\operatorname{Lm}(G)=\operatorname{Lm}(I)$, where $\operatorname{Lm}(S)=\{\operatorname{lm}(s) \mid s \in S\}$.

Proof. (i) \Rightarrow (ii) Let $f \in R\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. Then by Theorem 1.1, there exists $f^{\prime} \in R\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, reduced with respect to G, such that $f \xrightarrow{G} f^{\prime}$. Thus $f-f^{\prime} \in I$ and so $f \in I$, if and only if $f^{\prime} \in I$. Clearly, if $f^{\prime}=0$ (that is $f \stackrel{G}{\rightarrow}_{+} 0$), then $f \in I$. Conversely, if $f \in I$ and $f^{\prime} \neq 0$ then $f^{\prime} \in I$ and by (i), there exists $i \in\{1, \ldots, s\}$ such that $l t\left(g_{i}\right)$ divides $l t\left(f^{\prime}\right)$. This is a contradiction to the fact that f^{\prime} is reduced with respect to G. Thus $f^{\prime}=0$ and $f \xrightarrow{G}_{+} 0$.
(ii) \Rightarrow (iii) For $f \in I$, we know by hypothesis that $f \xrightarrow{G}_{+} 0$ and since the process of reduction is exactly the same as the Division Algorithm, we see that (iii) follows from Theorem 1.1.
$(i i i) \Rightarrow(i v)$ Clearly, $\operatorname{Lm}(G) \subseteq \operatorname{Lm}(I)$. For the reverse inclusion it suffices to show that for all $f \in I, \operatorname{lm}(f) \in \operatorname{Lm}(G)$, since the $\operatorname{lm}(f)^{\prime}$ generate $\operatorname{Lm}(I)$. Writing f as in the hypothesis, it immediately follows that

$$
\operatorname{lm}(f)=\sum_{i} \operatorname{lm}\left(h_{i}\right) \operatorname{lm}\left(g_{i}\right),
$$

where the sum is over all i such that $l t(f)=l t\left(h_{i}\right) l t\left(g_{i}\right)$. The result follows immediately.
(iv) $\Rightarrow(i)$ Let $f \in I$. Then $\operatorname{lm}(f)$ is in $\operatorname{Lm}(G)$, and hence

$$
\begin{equation*}
\operatorname{lm}(f)=\sum_{i=1}^{t} h_{i} \operatorname{lm}\left(g_{i}\right) \tag{1.14}
\end{equation*}
$$

for some $h_{i} \in R\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. If we expand the right-hand side of Equation we see that each term is divisible by some $\operatorname{lt}\left(g_{i}\right)$. Thus $\operatorname{lm}(f)$, the only term in the left-hand side, is also divisible by some $l t\left(g_{i}\right)$, as desired.

Example 1.10

Let $f=x^{3} y^{2}+2 x y+2 x+2 y, f_{1}=x^{2} y^{2}+2 x$ and $f_{2}=x y+1$. Also, let the order be lexicographic with $x>y$. We have $\operatorname{lt}(f)=x^{3} y^{2}, \operatorname{lt}\left(f_{1}\right)=x^{2} y^{2}$ and $\operatorname{lm}\left(f_{2}\right)=x y$.

- $\operatorname{lt}\left(f_{1}\right) / \operatorname{lt}(f) \Rightarrow f=x f_{1}+p_{1}$, where $p_{1}=-2 x^{2}+2 x y+2 x+2 y$
- $\operatorname{lt}\left(f_{1}\right), \operatorname{lt}\left(f_{2}\right)$ don't divide $\operatorname{lt}\left(p_{1}\right)$, so $p_{1}=-2 x^{2}+2 x y+2 x+2 y$ is a remainder of f.

Now we will solve it slightly different:

- $\operatorname{lt}\left(f_{2}\right) / l t(f) \Rightarrow f=x^{2} y f_{2}+p_{1}$, where $p_{1}=-x^{2} y+2 x y+2 x+2 y$
- $\operatorname{lt}\left(f_{2}\right) / l t\left(p_{1}\right) \Rightarrow f=x^{2} y f_{2}-x f_{2}+p_{1}$, where $p_{2}=2 x y+3 x+2 y$
- $\operatorname{lt}\left(f_{2}\right) / l t\left(p_{2}\right) \Rightarrow f=x^{2} y f_{2}-x f_{2}+2 f_{2}+p_{3}$, where $p_{3}=3 x+2 y-2$
- $\operatorname{lt}\left(f_{2}\right), \operatorname{lt}\left(f_{1}\right)$ don't divide $\operatorname{lt}\left(p_{3}\right)$, so $p_{3}=3 x+2 y-2$ is another remainder of f.

We notice that in the division algorithm a remainder of f is, in general, not unique. However,

Lemma 1.3 [7]

If $G=\left\{g_{1}, g_{2}, \ldots, g_{s}\right\}$ is a Gröbner basis of $I=\left(g_{1}, g_{2}, \ldots, g_{s}\right)$, then for any nonzero polynomial f of $R\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, there is a unique remainder of f with respect to $g_{1}, g_{2}, \ldots, g_{s}$.

Proof. Suppose there exist remainders f^{\prime} and $f^{\prime \prime}$ with respect to $g_{1}, g_{2}, \ldots, g_{s}$ with $f^{\prime} \neq f^{\prime \prime}$. Since $0 \neq f^{\prime}-f^{\prime \prime} \in I$, the initial monomial $w=\operatorname{lt}\left(f^{\prime}-f^{\prime \prime}\right)$ must belong to $\operatorname{lm}(I)$. However, since $w \in \operatorname{supp}\left(f^{\prime}\right) \cup \operatorname{supp}\left(f^{\prime \prime}\right)$, it follows that none of the
monomials $l t\left(g_{1}\right), l t\left(g_{2}\right), \ldots, l t\left(g_{t}\right)$ divides w. Hence $\operatorname{in}(I) \neq\left(l t\left(g_{1}\right), l t\left(g_{2}\right), \ldots, l t\left(g_{t}\right)\right)$ a contradiction.

Corollary 1.1 [7]

If $G=\left\{g_{1}, g_{2}, \ldots, g_{s}\right\}$ is a Gröbner basis of $I=\left(g_{1}, g_{2}, \ldots, g_{s}\right)$, then a non-zero polynomial f of $R\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ belongs to I if and only if the unique remainder of f with respect to $g_{1}, g_{2}, \ldots, g_{s}$ is 0 .

Proof. First, in general, if a remainder of a non-zero polynomial f of $R\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ with respect to $g_{1}, g_{2}, \ldots, g_{s}$ in 0 , then f belongs to $I=\left(g_{1}, g_{2}, \ldots, g_{s}\right)$.

Second, suppose that a non-zero polynomial f belongs to I and $f=f_{1} g_{1}+f_{2} g_{2}+$ $\cdots+f_{s} g_{s}+f^{\prime}$ is a standard expression of f with respect to $g_{1}, g_{2}, \ldots, g_{s}$. Since $f \in$ I, one has $f^{\prime} \in I$. If $f^{\prime} \neq 0$, then $l t\left(f^{\prime}\right) \in \operatorname{in}(I)$. Since G is a Gröbner basis of I, it follows that $\operatorname{in}(I)=\left(l t\left(g_{1}\right), l t\left(g_{2}\right), \ldots, l t\left(g_{s}\right)\right)$. However, since f^{\prime} is a remainder, none of the monomials $u \in \operatorname{supp}\left(f^{\prime}\right)$ can belong to $\left(l t\left(g_{1}\right), l t\left(g_{2}\right), \ldots, l t\left(g_{s}\right)\right) . \square$

Definition 1.20 [6]

A Gröbner basis $G=\left\{g_{1}, g_{2}, \ldots, g_{s}\right\}$ of an ideal I is called a Reduced Gröbner basis for I if
(i). $\quad l c\left(g_{i}\right)=1 \forall i$ and
(ii). none of the terms occurring in f_{i} belongs to $\operatorname{in}\left(G-\left\{g_{i}\right\}\right) \forall i$

Reduced Gröbner basis is very important due to its uniqueness. As a result of its uniqueness, we have the next theorem:

Theorem 1.3 [6]

A reduced Gröbner basis exists and is uniquely determined.
Proof. (Existence) Let I be a non-zero ideal of $R\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ and $\left\{u_{1}, u_{2}, \ldots, u_{s}\right\}$ the unique monomial system of monomial generators of $\operatorname{in}(I)$. Thus, for $i \neq j$, the monomial u_{i} cannot be divided by u_{j} for each $1 \leq i \leq s$, we choose a polynomial $g_{i} \in I$ with $l t\left(g_{i}\right)=u_{i}$.

Let $g_{1}=f_{2} g_{2}+\cdots+f_{s} g_{s}+h_{1}$ be a standard expression of g_{1} with respect to g_{2}, \ldots, g_{s}, where h_{1} a remainder. It follows from the property (ii) required in the division algorithm that $l t\left(g_{1}\right)$ coincides with one of the monomials
$\operatorname{lt}\left(f_{2}\right), \operatorname{lt}\left(g_{2}\right), \ldots, \operatorname{lt}\left(f_{s}\right), \operatorname{lt}\left(g_{s}\right), l t\left(h_{1}\right)$. Since $l t\left(g_{1}\right)=u_{1}$ can be divided by none of the monomials $l t\left(g_{2}\right), \ldots, l t\left(g_{s}\right)$, one has $l t\left(h_{1}\right)=l t\left(g_{1}\right)$. Hence $\left\{h_{1}, g_{2}, \ldots, g_{s}\right\}$ is a Gröbner basis of I. Since the monomial h_{1} is a remainder of a standard expression of g_{1} with respect to g_{2}, \ldots, g_{s}, each monomial of $\operatorname{supp}\left(h_{1}\right)$ is divided by none of the monomials $l t\left(g_{2}\right), \ldots, l t\left(g_{s}\right)$.

Similarly, if h_{2} is a remainder of a standard expression of g_{2} with respect to $h_{1}, g_{3}, g_{4}, \ldots, g_{s}$, the one has $l t\left(h_{2}\right)=l t\left(g_{2}\right)$ and each monomial of $\operatorname{supp}\left(h_{2}\right)$ is divided by none of the monomials $l t\left(h_{1}\right), l t\left(g_{3}\right), \ldots, l t\left(g_{s}\right)$. Moreover, $\left\{h_{1}, h_{2}, g_{3}, \ldots, g_{s}\right\}$ is a Gröbner basis of I. Since $l t\left(h_{2}\right)=l t\left(g_{2}\right)$, each monomial of $\operatorname{supp}\left(h_{1}\right)$ is divided by none of the monomials $\operatorname{lt}\left(h_{2}\right), \operatorname{lt}\left(g_{3}\right), \ldots, l t\left(g_{s}\right)$.

Continuing these procedures yields the polynomials $\left\{h_{3}, h_{4}, \ldots, h_{S}\right\}$ which satisfies condition (ii). Dividing h_{i} by the coefficient of $l t\left(h_{i}\right)$ for all i, we obtain a reduced basis of I.
(Uniqueness) Let $\left\{g_{1}, g_{2}, \ldots, g_{s}\right\}$ and $\left\{h_{1}, h_{2}, \ldots, h_{t}\right\}$ be reduced Gröbner bases of I. Since $\left\{l t\left(g_{1}\right), l t\left(g_{2}\right), \ldots, l t\left(g_{s}\right)\right\}$ and $\left\{l t\left(h_{1}\right), l t\left(h_{2}\right), \ldots, l t\left(h_{t}\right)\right\}$ are the minimal system of monomial generators of the initial ideal in (I) of I, we may assume that $s=t$ and $l t\left(g_{i}\right)=l t\left(h_{i}\right)$ for all $1 \leq i \leq s(=t)$. If $g_{i} \neq h_{i}$, then $0 \neq g_{i}-h_{i} \in I$ and $l t\left(g_{i}-h_{i}\right)<l t\left(g_{i}\right)$. In particular $l t\left(g_{i}\right)$ cannot divide $l t\left(g_{i}-h_{i}\right)$. Since the monomial $l t\left(g_{i}-h_{i}\right)$ must appear in either $\operatorname{supp}\left(g_{i}\right)$ or $\operatorname{supp}\left(h_{i}\right)$, it follows that $l t\left(g_{i}-h_{i}\right)$ cannot be divided by $\operatorname{lt}\left(g_{i}\right)$ with $j \neq i$. Hence, $l t\left(g_{i}-h_{i}\right) \notin \operatorname{in}(I)$. This contradicts $g_{i}-h_{i} \in I$.ロ

1.5 Buchberger's algorithm

In this chapter, we will present the Buchberger's algorithm. The Buchberger's algorithm helps us to find a Gröbner basis, which got its name by Bruno Buchberger. A useful computational definition of Gröbner bases is in terms of S-polynomials. Let it be $L=\operatorname{lcm}(l t(f), l t(g))$, where $l c m$ is a least common multiple.

Definition 1.21 [5]
Let $0 \neq f, g \in R\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. The polynomial

$$
\begin{equation*}
S(f, g)=\frac{L}{\operatorname{lm}(f)} f-\frac{L}{\operatorname{lm}(g)} g \tag{1.15}
\end{equation*}
$$

is called the S - polynomial of f and g.

Example 1.11

A. Let $G=\{f, g\}$, where $f=2 x y^{2} z-x y z^{2}$ and $g=x^{2} y z-z^{2}$ with respect to lexicographic order and $x>y>z$. We have $\operatorname{lm}(f)=2 x y^{2} z, l t(f)=x y^{2} z$ and $\operatorname{lm}(g)=\operatorname{lt}(g)=x^{2} y z$, and therefore $L=x^{2} y^{2} z$.

$$
S(f, g)=\frac{x^{2} y^{2} z}{2 x y^{2} z} f-\frac{x^{2} y^{2} z}{x^{2} y z} g=\frac{x}{2} f-y g=\frac{-1}{2} x^{2} y z^{2}+y z^{2}
$$

B. Let $G=\{f, g\}$, where $f=x^{2} y+2 x+1$ and $g=x y+2 y$ with respect to degree lexicographic order and $x>y>z$. We have $\operatorname{lm}(f)=x^{2} y=\operatorname{lt}(f)$ and $\operatorname{lm}(g)=$ $l t(g)=x y$, and therefore $L=x^{2} y$.

$$
S(f, g)=\frac{x^{2} y}{x^{2} y} f-\frac{x^{2} y}{x y} g=f-x g=-2 x y+2 x+1
$$

Theorem 1.4 [5]

Let $G=\left\{g_{1}, g_{2}, \ldots, g_{s}\right\}$ be a set of non-zero polynomials in $S=R\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. Then G is a Gröbner basis for the ideal $I=<g_{1}, g_{2}, \ldots, g_{s}>$ if and only if for all $i \neq j$,

$$
S\left(g_{i}, g_{j}\right) \xrightarrow{G}_{+} 0 .
$$

In order to prove Theorem 1.4, we need the following lemma :

Lemma 1.4 [5]

Let $g_{1}, g_{2}, \ldots, g_{s} \in R\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ be such that $l t\left(g_{i}\right)=X \neq 0$ for all $i=1, \ldots, s$. Let $g=\sum_{i=1}^{S} c_{i} g_{i}$ with $c_{i} \in F, i=1, \ldots, s$. If $\operatorname{lt}(g)<X$, then g is a linear combination, with coefficients in F, of $S\left(g_{i}, g_{j}\right), 1 \leq i, j \leq s$.

Proof. Where $g_{i}=a_{i} X+$ lower term, $a_{i} \in F$. Then the hypothesis says that $\sum_{i=1}^{s} c_{i} g_{i}=0$, since the c_{i} 's are in F. Now, by Definition, $S\left(g_{i}, g_{j}\right)=\frac{1}{a_{i}} g_{i}-\frac{1}{a_{j}} g_{j}$, since $l t\left(g_{i}\right)=l t\left(g_{j}\right)=X$. Thus

$$
\begin{aligned}
& g=c_{1} g_{1}+c_{2} g_{2}+\cdots+c_{s} g_{s} \\
& =c_{1} a_{1}\left(\frac{1}{a_{1}} g_{1}\right)+c_{2} a_{2}\left(\frac{1}{a_{2}}\right) g_{2}+\cdots+c_{s} a_{s}\left(\frac{1}{a_{s}}\right) g_{s} \\
& = \\
& c_{1} a_{1}\left(\frac{1}{a_{1}} g_{1}-\frac{1}{a_{2}} g_{2}\right)+\left(c_{1} a_{1}+c_{2} a_{2}\right)\left(\frac{1}{a_{2}} g_{2}-\frac{1}{a_{3}} g_{3}\right)+\cdots+ \\
& \quad\left(c_{1} a_{1}+\cdots+c_{s-1} a_{s-1}\right)\left(\frac{1}{a_{s-1}} g_{s-1}-\frac{1}{a_{s}} g_{s}\right)+\left(c_{1} a_{1}+\cdots+c_{s} a_{s}\right) \frac{1}{a_{s}} g_{s} \\
& = \\
& \quad c_{1} a_{1} S\left(g_{1}, g_{2}\right)+\left(c_{1} a_{1}+c_{2} a_{2}\right) S\left(g_{2}, g_{3}\right)+\cdots+ \\
& \quad\left(c_{1} a_{1}+\cdots+c_{s-1} a_{s-1}\right) S\left(g_{s-1}, g_{s}\right),
\end{aligned}
$$

since $c_{1} a_{1}+\cdots+c_{s} a_{s}=0 . \square$
Now we can prove Theorem 1.4:

Proof. If $G=\left\{g_{1}, g_{2}, \ldots, g_{s}\right\}$ is a Gröbner basis for $I=<g_{1}, g_{2}, \ldots, g_{s}>$, then $S\left(g_{i}, g_{j}\right) \xrightarrow{G} 0$ for all $i \neq j$ by Theorem 1.2 , since $S\left(g_{i}, g_{j}\right) \in I$.
Conversely, let us assume that $S\left(g_{i}, g_{j}\right) \xrightarrow{G}+0$ for all $i \neq j$. We will use Theorem 1.2 (iii) to prove that G is a Gröbner basis for I. Let $f \in I$. Then f can be written in many ways as a linear combination of the g_{i} 's. We choose to write $f=\sum_{i=1}^{S} h_{i} g_{i}$, with

$$
X=\max _{1 \leq i \leq s}\left(l t\left(h_{i}\right) l t\left(g_{i}\right)\right)
$$

least (here we use the well-ordering property of the term order). If $X=l t(f)$, we are done. Otherwise, $l t(f)<X$. We will find a representation of f with a smaller X, and this will be a contradiction. Let $S=\left\{i \mid l t\left(h_{i}\right) l t\left(g_{i}\right)=X\right\}$. For $i \in S$, write $h_{i}=$ $c_{i} X_{i}+$ lower terms. Set $g=\sum_{i \in S} c_{i} X_{i} g_{i}$. Then, $l t\left(X_{i} g_{i}\right)=X$, for all $i \in S$, but $l t(g)<X$. By Lemma 1.4, there exist $a_{i j} \in F$ such that

$$
g=\sum_{i, j \in S, i \neq j} d_{i j} S\left(X_{i} g_{i}, X_{j} g_{j}\right)
$$

Now, $X=\operatorname{lcm}\left(l t\left(X_{i} g_{i}\right), l t\left(X_{j} g_{j}\right)\right)$, so

$$
\begin{aligned}
S\left(X_{i} g_{i}, X_{j} g_{j}\right) & =\frac{X}{\operatorname{lm}\left(X_{i} g_{i}\right)} X_{i} g_{i}-\frac{X}{\operatorname{lm}\left(X_{j} g_{j}\right)} X_{j} g_{j} \\
& =\frac{X}{\operatorname{lm}\left(g_{i}\right)} g_{i}-\frac{X}{\operatorname{lm}\left(g_{j}\right)} g_{j}=\frac{X}{X_{i j}} S\left(g_{i}, g_{j}\right),
\end{aligned}
$$

where $X_{i j}=\operatorname{lcm}\left(\operatorname{lt}\left(g_{i}\right), \operatorname{lt}\left(g_{j}\right)\right)$. By hypothesis, $S\left(g_{i}, g_{j}\right) \xrightarrow{G} 0$, and so we see from this last equation that $S\left(X_{i} g_{i}, X_{j} g_{j}\right) \xrightarrow{G}$. This gives a representation

$$
S\left(X_{i} g_{i}, X_{j} g_{j}\right)=\sum_{v=1}^{s} h_{i j v} g_{v}
$$

where Theorem 1.1

$$
\max _{1 \leq v \leq s}\left(l t\left(h_{i j v}\right) l t\left(g_{v}\right)\right)=l t\left(S\left(X_{i} g_{i}, X_{j} g_{j}\right)\right)<\max \left(l t\left(X_{i} g_{i}\right), l t\left(X_{j} g_{j}\right)\right)=X
$$

Substituting these expression into g above, and g into f, we get $f=\sum_{i=1}^{S} h_{i}^{\prime} g_{i}$, with

$$
\max _{1 \leq i \leq s}\left(l t\left(h_{i}^{\prime}\right), l t\left(g_{i}\right)\right)<X .
$$

This is contradiction

Example 1.12

A. According to Example 1.11A, we have $f=2 x y^{2} z-x y z^{2}, g=x^{2} y z-z^{2}$ and $S(f, g)=\frac{-1}{2} x^{2} y z^{2}+y z^{2}$. We have $l t(f)=x y^{2} z, l t(g)=x^{2} y z$ and $l t(S(f, g))=$ $x^{2} y z^{2}$.

- $\quad l t(f)$ doesn't divide $l t(S(f, g))$, while
- $l t(g) / l t(S(f, g)) \Rightarrow S(f, g)=\frac{-z}{2} g+p_{1}$, where $p_{1}=y z^{2}-\frac{z^{3}}{2}$
- $l t(g), l t(f)$ don't divide $l t\left(p_{1}\right)$, so $p_{1}=y z^{2}-\frac{z^{3}}{2}$ is the remainder.

As a result, $G=\{f, g\}$ isn't a Gröbner basis.
B. According to Example 1.11B, we have $f=x^{2} y+2 x+1, g=x y+2 y$ and $S(f, g)=-2 x y+2 x+1$. We have $\operatorname{lt}(f)=x^{2} y, l t(g)=x y$ and $l t(S(f, g))=$ $x y$.

- $l t(f)$ doesn't divide $l t(S(f, g))$, while
- lt $(g) / l t(S(f, g)) \Rightarrow S(f, g)=-2 g+p_{1}$, where $p_{1}=2 x+4 y+1$
- $l t(g), l t(f)$ don't divide $\operatorname{lt}\left(p_{1}\right)$, so $p_{1}=2 x+4 y+1$ is the remainder.

As a result, $G=\{f, g\}$ isn't a Gröbner basis.

Finally, below is given Buchberger's algorithm for computing Gröbner bases. [5,6,7,8]
$F=\left\{f_{1}, f_{2}, \ldots, f_{s}\right\} \subseteq R\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ with $g_{i} \neq 0(1 \leq i \leq s)$, we find a set $G=$ $\left\{g_{1}, g_{2}, \ldots, g_{s}\right\}$, which is a Gröbner basis for $I=<f_{1}, f_{2}, \ldots, f_{s}>$.

Step1. Let $G=F$ and $\mathcal{G}=\left\{\left\{f_{i}, f_{j}\right\} \mid f_{i} \neq f_{j} \in G\right\}$
Step2. While $\mathcal{G} \neq \varnothing$, we choose any pair of \mathcal{G} and then update $\mathcal{G}=\mathcal{G}-\left\{\left\{f_{i}, f_{j}\right\}\right\}$
Step3. Compute $S\left(f_{i}, f_{j}\right) \xrightarrow{G} h$.
Step4. If $h=0$: repeat Step 2-Step 4 until $\mathcal{G}=\varnothing$, otherwise update \mathcal{G} and G as follows:

$$
\begin{gathered}
\mathcal{G}=\mathcal{G} \cup\{\{u, h\} \mid \text { for all } u \in G\} \\
G=G \cup\{h\}
\end{gathered}
$$

Step5. Repeat Step $2-\operatorname{Step} 4$, until $\mathcal{G}=\varnothing . \square$

Example 1.13

A. Let $I=<f_{1}=x y-x, f_{2}=x^{2}-y>$. We use the lexicographic order with $x>y$.

- Let $G=\left\{f_{1}, f_{2}\right\}$ and $\mathcal{G}=\left\{\left\{f_{1}, f_{2}\right\}\right\}$. We choose the pair $\left\{f_{1}, f_{2}\right\}$.
- Then $\mathcal{G}=\varnothing$
- We compute $S\left(f_{1}, f_{2}\right)=-x^{2}+y^{2}$ and $S\left(f_{1}, f_{2}\right) \xrightarrow{G}_{+} y^{2}-y=f_{3}$, so $G=\left\{f_{1}, f_{2}, f_{3}\right\}$ and $\mathcal{G}=\left\{\left\{f_{1}, f_{3}\right\},\left\{f_{2}, f_{3}\right\}\right\}$
- $S\left(f_{1}, f_{3}\right)=0$ and $S\left(f_{2}, f_{3}\right)=x^{2} y-y^{3}$, we find $S\left(f_{2}, f_{3}\right) \xrightarrow{G}+0$.
- $\mathcal{G}=\varnothing$, so we stop here.

Eventually, $G=\left\{f_{1}, f_{2}, f_{3}\right\}$ is a Gröbner basis for the ideal I.

Reduced Gröbner basis of $G=\left\{f_{1}, f_{2}, f_{3}\right\}$ is the same because none of the $\operatorname{lt}\left(f_{i}\right)$ divide any of the others $l t\left(f_{j}\right)$, with $f_{i} \neq f_{j}$.
B. Let $I=<f_{1}=y^{2}+y x+x^{2}, f_{2}=y+x, f_{3}=y>$. We use the lexicographic order with $y>x$.

- Let $G=\left\{f_{1}, f_{2}, f_{3}\right\}$ and $\mathcal{G}=\left\{\left\{f_{1}, f_{2}\right\},\left\{f_{1}, f_{3}\right\},\left\{f_{2}, f_{3}\right\}\right\}$
- Then $\mathcal{G}=\left\{\left\{f_{1}, f_{3}\right\},\left\{f_{2}, f_{3}\right\}\right\}$
- We compute $S\left(f_{1}, f_{2}\right)=x^{2}=f_{4}$, so $G=\left\{f_{1}, f_{2}, f_{3}, f_{4}\right\} \quad$ and $\mathcal{G}=\left\{\left\{f_{1}, f_{3}\right\},\left\{f_{2}, f_{3}\right\},\left\{f_{1}, f_{4}\right\},\left\{f_{2}, f_{4}\right\},\left\{f_{3}, f_{4}\right\}\right\}$
- $\mathcal{G}=\left\{\left\{f_{2}, f_{3}\right\},\left\{f_{1}, f_{4}\right\},\left\{f_{2}, f_{4}\right\},\left\{f_{3}, f_{4}\right\}\right\}$ and $S\left(f_{1}, f_{3}\right) \xrightarrow{G}+0$, then
- $\mathcal{G}=\left\{\left\{f_{1}, f_{4}\right\},\left\{f_{2}, f_{4}\right\},\left\{f_{3}, f_{4}\right\}\right\} \quad$ and $\quad S\left(f_{2}, f_{3}\right) \xrightarrow{G}+f_{5} \quad$ and $G=\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{5}\right\}$
- $\mathcal{G}=\left\{\left\{f_{1}, f_{4}\right\},\left\{f_{2}, f_{4}\right\},\left\{f_{3}, f_{4}\right\},\left\{f_{1}, f_{5}\right\},\left\{f_{2}, f_{5}\right\},\left\{f_{3}, f_{5}\right\},\left\{f_{4}, f_{5}\right\}\right\}$ and $S\left(f_{1}, f_{4}\right)$ $\xrightarrow{G}+0$ and then, $\mathcal{G}=\left\{\left\{f_{2}, f_{4}\right\},\left\{f_{3}, f_{4}\right\},\left\{f_{1}, f_{5}\right\},\left\{f_{2}, f_{5}\right\},\left\{f_{3}, f_{5}\right\},\left\{f_{4}, f_{5}\right\}\right\}$
- All the other $S\left(f_{2}, f_{4}\right), S\left(f_{3}, f_{4}\right), S\left(f_{1}, f_{5}\right), S\left(f_{2}, f_{5}\right), S\left(f_{3}, f_{5}\right), S\left(f_{4}, f_{5}\right)$ $\xrightarrow{G} 0$ and $\mathcal{G}=\varnothing$, so we stop here.

Eventually, $G=\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{5}\right\}$ is a Gröbner basis for the ideal I.
Reduced Gröbner basis of $G=\left\{f_{3}, f_{5}\right\}$.

1．6 Gröbner bases in Mathematica

Generally，computing Gröbner basis by hand is cumbersome，and may be impractical in many occasions．However，with the development of fast computers，Buchberger＇s algorithm is now implemented in many Computer Algebra packages e．g Theorema， Maple，Mathematica，Singular and CoCoA．Theorema is developed by Buchberger and his team．

The Theorema language allows to integrate computations（＂programming＂）along with mathematical theorem proving as another crucial ingredient of theory exploration．As an example，it is coded an operator－based algorithm for computing Green＇s operators for linear boundary problems（both ODEs and simple PDEs） directly in a Theorema notebook．Their approach relies on a noncommutative Gröbner basis that describes the relations of the basic analysis operators appearing in boundary problems；

In Mathematica，we have to use the command ：

$$
\text { GroebnerBasis }[\{\ldots\},\{x, y, z, \ldots .\}] \text { and then shift }+ \text { enter. }
$$

In the first bracket，we put f_{i} and in the second bracket，we put the unknown variables．

Example 1.14

A．Consider the ideal

$$
I=<x^{3} y+x+y+1, y^{3}+x^{2}+z, z^{2} y+z^{2}>
$$

The reduced Gröbner basis for I with respect to the lex ordering with $z<y<x$ is computed using Mathematica and is given by：

```
貵 Untitled-4*
    In[30]:= GroebnerBasis[{y* x^`3+x+y+1, z+ x^^2+ y^^3,y* z^^2+ z^^2},{x, y, z}]
    Out[30]={-\mp@subsup{z}{}{3}+\mp@subsup{z}{}{4},\mp@subsup{z}{}{2}+y\mp@subsup{z}{}{2},1+2y+\mp@subsup{y}{}{2}+\mp@subsup{y}{}{3}-2 \mp@subsup{y}{}{7}+\mp@subsup{y}{}{11}+z-4\mp@subsup{y}{}{4}z+3\mp@subsup{y}{}{8}z-\mp@subsup{z}{}{2}+\mp@subsup{z}{}{3},
        1+y+\mp@subsup{y}{}{3}-\mp@subsup{y}{}{4}+\mp@subsup{y}{}{5}-\mp@subsup{y}{}{6}-\mp@subsup{y}{}{7}+\mp@subsup{y}{}{8}-\mp@subsup{y}{}{9}+\mp@subsup{y}{}{10}+z+xz-yz+\mp@subsup{y}{}{2}z-2 \mp@subsup{y}{}{3}z-2 \mp@subsup{y}{}{4}z+
        2 y }\mp@subsup{y}{}{5}z-2\mp@subsup{y}{}{6}z+3\mp@subsup{y}{}{7}z+5\mp@subsup{z}{}{2}-\mp@subsup{z}{}{3},x+xy-\mp@subsup{y}{}{3}+\mp@subsup{y}{}{7}-z+2\mp@subsup{y}{}{4}z-\mp@subsup{z}{}{2},\mp@subsup{x}{}{2}+\mp@subsup{y}{}{3}+z
    Groebner basis curl div polynomial reduce more... @ 票 目
```

This is the reduced Gröbner basis ：
$f_{1}=-z^{3}+z^{4}$
$f_{2}=z^{2}+y z^{2}$
$f_{3}=1+2 y+y^{2}+y^{3}-2 y^{7}+y^{11}+z-4 y^{4} z+3 y^{8} z-z^{2}+z^{3}$
$f_{4}=1+y+y^{3}-y^{4}+y^{5}-y^{6}-y^{7}+y^{8}-y^{9}+y^{10}+z+x z-y z+y^{2} z$
$-2 y^{3} z-2 y^{4} z+2 y^{5} z-2 y^{6} z+3 y^{7} z+5 z^{2}-z^{3}$
$f_{5}=x+x y-y^{3}+y^{7}-z+2 y^{4} z-z^{2}$
$f_{6}=x^{2}+y^{3}+z$
B. Consider the ideal

$$
I=<x y-x, y^{2}-1, x-1>
$$

The reduced Gröbner basis for I with respect to the lex ordering with $x>y$ is computed using Mathematica and is given by:

This is the reduced Gröbner basis :
$f=y^{2}-1$ and $g=x-1$
C. Consider the ideal

$$
I=<y^{2}+y x+x^{2}, y+x, y>.
$$

The reduced Gröbner basis for I with respect to the lex ordering with $y>x$ is computed using Mathematica and is given by:
$\ln [4]:=$ GroebnerBasis $\left[\left\{y^{\wedge} 2+y * x+x^{\wedge} 2, y+x, y\right\},\{y, x\}\right]$
Out[4] $=\{\mathbf{x}, \mathrm{y}\}$

| reverse | curl | div | array rules | more... | 晴 | 目 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

This is the reduced Gröbner basis :
$f_{3}=y$ and $f_{5}=x$

Chapter 2

Equivalence of Polynomial Matrices

2.1 1- $\underline{\underline{D}}$ Polynomial Matrices

2.1.1 Important Notions and Definitions

Definition 2.1 [3]
A polynomial $n \times m$ - matrix over the body \mathcal{F} is a matrix with elements polynomials where they have coefficients of \mathcal{F}. Such a matrix is denoted

$$
P(x)=\left(\begin{array}{ccc}
p_{11}(x) & \ldots & p_{1 m}(x) \tag{2.1}\\
p_{21}(x) & \ldots & p_{2 m}(x) \\
\vdots & \ddots & \vdots \\
p_{n 1}(x) & \ldots & p_{n m}(x)
\end{array}\right)
$$

where $p_{i j}(x) \in R[x]$. For a matrix $A=\left(a_{i j}\right) \in M_{n, m}(\mathcal{F})$ and for a natural number s, we define

$$
x^{s} A=\left(x^{s} a_{i j}\right)
$$

We may represent the polynomial matrix $P(x)$ in the form of a matrix polynomial in x, i.e., in the form of a polynomial in x with matrix coefficients:

$$
P(x)=P_{0} x^{l}+P_{1} x^{l-1}+\cdots+P_{l-1} x+P_{l} .
$$

Now we will see some important properties of polynomial matrices without attempting to generalize these properties to include all matrices with elements in a commutative ring.

The theory of elementary divisors, invented by Sylvester, H.J.S Smith, and, more particularly, Weierstrass, and perfected in important respects by Kronecker, Frobenious, and others.

In particular, we now have:

Definition 2.2 [12]

The following three elementary row (column) operations on the polynomial matrix $P(x)$ with coefficients in R are defined
(i) Interchange of rows (columns) i and j.
(ii) Multiplication of row (column) i by a nonzero scalar in $R(c \neq 0)$.
(iii) Replacement of row (column) i by itself plus any polynomial multiplied by any other row (column) j (for example the $i-t h$ of any other row, for example the $j-t h$ multiplied by any arbitrary polynomial $b(x)$).

The operations (i), (ii) and (iii) are equivalent to a multiplication of the polynomial matrix $P(x)$ on the left by the following square matrices of order, respectively [13]:
(i) $\quad S^{\prime}=\left(\begin{array}{cccccc}1 & \cdots & \cdots & \cdots & \cdots & 0 \\ \vdots & \ddots & & & & \vdots \\ \vdots & & 0 & 1 & & \vdots \\ \vdots & & 1 & 0 & & \vdots \\ \vdots & & & & \ddots & \vdots \\ 0 & \cdots & \cdots & \cdots & \cdots & 1\end{array}\right)$
(ii) $\quad S^{\prime \prime}=\left(\begin{array}{ccccc}1 & \cdots & \cdots & \cdots & 0 \\ \vdots & \ddots & & & \vdots \\ \vdots & & c & & \vdots \\ \vdots & & & \ddots & \vdots \\ 0 & \cdots & \cdots & \cdots & 1\end{array}\right)$
(iii) $\quad S^{\prime \prime \prime}=\left(\begin{array}{cccccc}1 & \cdots & \cdots & \cdots & \cdots & 0 \\ \vdots & \ddots & & & & \vdots \\ \vdots & & 1 & b(x) & & \vdots \\ \vdots & & & \ddots & & \vdots \\ \vdots & & & & \ddots & \vdots \\ 0 & \cdots & \cdots & \cdots & \cdots & 1\end{array}\right)$

In the same way, we define the right elementary operations on a polynomial matrix, the matrices (of order m) corresponding to them are:
(i) $\quad T^{\prime}=\left(\begin{array}{cccccc}1 & \cdots & \cdots & \cdots & \cdots & 0 \\ \vdots & \ddots & & & & \vdots \\ \vdots & & 0 & 1 & & \vdots \\ \vdots & & 1 & 0 & & \vdots \\ \vdots & & & & \ddots & \vdots \\ 0 & \cdots & \cdots & \cdots & \cdots & 1\end{array}\right)$
(ii) $\quad T^{\prime \prime}=\left(\begin{array}{ccccc}1 & \cdots & \cdots & \cdots & 0 \\ \vdots & \ddots & & & \vdots \\ \vdots & & c & & \vdots \\ \vdots & & & \ddots & \vdots \\ 0 & \cdots & \cdots & \cdots & 1\end{array}\right)$
(iii) $\quad T^{\prime \prime \prime}=\left(\begin{array}{cccccc}1 & \cdots & \cdots & \cdots & \cdots & 0 \\ \vdots & \ddots & & & & \vdots \\ \vdots & & 1 & & & \vdots \\ \vdots & & b(x) & \ddots & & \vdots \\ \vdots & & & & \ddots & \vdots \\ 0 & \cdots & \cdots & \cdots & \cdots & 1\end{array}\right)$

Definition 2.3 [12]

The rank ρ of a matrix P, denoted a $\rho(P)$, is equal to the maximum number of linearly independent columns (or rows) of P over the smallest field F which contains the elements of P.

Definition 2.4 [12]

We introduce a concise notation for determinants formed from elements of the given matrix:

$$
A\left(\begin{array}{cccc}
i_{1} & i_{2} & \ldots & i_{p} \tag{2.2}\\
k_{1} & k_{2} & \ldots & k_{p}
\end{array}\right)=\left|\begin{array}{cccc}
a_{i_{1} k_{1}} & a_{i_{1} k_{2}} & \cdots & a_{i_{1} k_{p}} \\
a_{i_{2} k_{1}} & a_{i_{2} k_{2}} & \cdots & a_{i_{2} k_{p}} \\
\vdots & \vdots & \ddots & \vdots \\
a_{i_{p} k_{1}} & a_{i_{p} k_{2}} & \cdots & a_{i_{p} k_{p}}
\end{array}\right|
$$

Definition 2.5 [14]

A $n \times m$ polynomial matrix $P(x)$ is a matrix with entries that are real coefficient polynomials in x.
A square $(n=m)$ polynomial matrix $P(x)$ is called nonsingular if $\operatorname{det} P(x)$ is a nonzero polynomial, and unimodular if $\operatorname{det} P(x)$ is a nonzero real number.

Thus an alternative characterization is nonsingular if and only if det $P\left(x_{0}\right) \neq 0$ for all but a finite number of complex number x_{0}. And $P(x)$ is unimodular if and only if $\operatorname{det} P\left(x_{0}\right) \neq 0$ for all complex numbers x_{0}.

Between a matrix and its inverse we have that, $P^{-1}(x)$ is unimodular if $P(x)$ is unimodular. Conversely if $P(x)$ and $P^{-1}(x)$ both are polynomial matrices, then both are unimodular.

Example 2.1

A. We have the matrix

$$
A=\left(\begin{array}{cc}
2 x & x^{2}+x+1 \\
2 & x+1
\end{array}\right)
$$

$\operatorname{det}(A)=-2 \neq 0$. Since $\operatorname{det}(A)$ is a nonzero real number, the matrix A is unimodular.
B. We have the matrix

$$
B=\left(\begin{array}{cc}
x & x+1 \\
x-1 & x
\end{array}\right)
$$

$\operatorname{det}(B)=1 \neq 0$. Since $\operatorname{det}(A)$ is a nonzero real number, the matrix B is unimodular.

We study mostly systems which has rational transfer function. Let give the definition of a rational matrix:

Definition 2.6

Let $R[x]$ be the ring of polynomials with coefficients of R and $R(x)$ is the bode of rational functions over $R[x]$

$$
\begin{equation*}
R(x)=\left\{g(x) \left\lvert\, g(x)=\frac{n(x)}{d(x)}\right., n(x), d(x) \in R[x], d(x) \neq 0\right\} \tag{2.3}
\end{equation*}
$$

$R(x)$ is called the body of rational functions.
Note: The elementary row and column operations where we can implement in a rational matrix are the same as in Definition 2.2.

So, we have that every rational transfer function can be expressed as $g(x)=\frac{n(x)}{d(x)}$, where $n(x), d(x)$ are polynomials of x. The $g(x)$ can be classified as follows [21]:

- $g(x)$ proper $\Leftrightarrow \operatorname{deg} d(x) \geq \operatorname{deg} n(s) \Leftrightarrow g(\infty)=$ zero or nonzero constant.
- $g(x)$ strictly proper $\Leftrightarrow \operatorname{deg} d(x)>\operatorname{deg} n(s) \Leftrightarrow g(\infty)=0$.
- $g(x)$ biproper $\Leftrightarrow \operatorname{deg} d(x)=\operatorname{deg} n(s) \Leftrightarrow g(\infty)=$ nonzero constant..
- $g(x)$ improper $\Leftrightarrow \operatorname{deg} d(x)<\operatorname{deg} n(s) \Leftrightarrow|g(\infty)|=\infty$.

Note: Improper rational transfer functions will amplify high-frequency noise, which often exists in the real world; therefore improper rational functions rarely arise in practice.

We introduce the concept of invariant polynomials of a matrix $A(x)$. Since in the theory of 2-D matrix we distinguish between two types of invariants; those associated with isolated points of \mathbb{C}^{2}.

In 1-D theory, we have the factors and are described by Smith form. In 1-D case the Smith form can be obtained by pre- and post- multiplication by unimodular matrices, but this is impossible in 2-D case. We will see 2-D case later. Now let's give the definition of invariant polynomials.

Definition 2.7 [19]

The $i-$ th determinantal divisor $d_{i}(x), i=1, \ldots r$ of the matrix $A(x)$ is the greatest common divisor of the $i-t h$ order minors of $A(x)$. The zeros of $d_{i}(x)$ are called the i - th determinantal zeros of $A(x)$.

Note: The set of i - th order determinantal zeros of a polynomial matrix $A(x)$ is denoted $\eta_{i}\{A(x)\}$.

Definition 2.8 [11]

We define $d_{0}(x) \equiv 1$ and we have

$$
\begin{equation*}
i_{1}(x)=\frac{d_{0}(x)}{d_{1}(x)}, \quad i_{2}(x)=\frac{d_{1}(x)}{d_{2}(x)}, \ldots, \quad i_{r}(x)=\frac{d_{r-1}(x)}{d_{r}(x)} \tag{2.4}
\end{equation*}
$$

these are called invariant polynomials of the polynomial matrix $A(x)$.

Note : The characterization "invariant" is due to the fact that polynomials $i_{1}(x), i_{2}(x), \ldots, i_{r}(x)$ remain invariant beneath equivalence transformations of $A(x)$. This is also evident from (2.4)

Theorem 2.1 [13]

Let $A(x) \in R[x]^{n \times m}$ with $\operatorname{rank} A(x)=r, r=\min \{n, m\}$. Then $A(x)$ is equivalent with a diagonal matrix $S_{A(x)}^{C}(x) \in R[x]^{n \times n}$ where it has the form:

$$
\begin{equation*}
S_{A(x)}^{C}(x)=\operatorname{diag}\left[i_{1}(x), i_{2}(x), \ldots, i_{r}(x), 0_{m-r, n-r}\right] \tag{2.5}
\end{equation*}
$$

and it is called Smith form of $A(x)$ in \mathbb{C} where the polynomials $i_{1}(x), i_{2}(x), \ldots, i_{r}(x)$ are not identically equal to zero and each of the polynomials $i_{2}(x), \ldots, i_{r}(x)$ is divisible by the preceding. Moreover, it is assumed that the highest coefficient of all the polynomials $i_{2}(x), \ldots, i_{r}(x)$ are equal to 1 .

Proof. Among all the elements $a_{i j}(x)$ of $A(x)$ that are not identically equal to zero we choose one which has the least degree in x and by suitable permutations of the rows and columns we make this element into $a_{1}(x)$. Then we find the quotients and remainders of the polynomials $a_{11}(x)$:

$$
\begin{gathered}
a_{i 1}(x)=a_{11}(x) q_{i 1}(x)+r_{i 1}(x), a_{i j}(x)=a_{11}(x) q_{1 j}(x)+r_{1 j}(x) \\
(i=2, \ldots, n, j=2, \ldots m)
\end{gathered}
$$

If at least one of the remainders $r_{i 1}(x), r_{1 j}(x)(i=2, \ldots, n, j=2, \ldots m)$, for example $r_{1 j}(x)$, is not identically equal to zero, then by subtracting from the $j-t h$ column the first column multiplied by $q_{1 j}(x)$, we replace $a_{1 j}(x)$ by the remainder $r_{1 j}(x)$, which is of smaller degree than $a_{11}(x)$. Then we can again reduce the degree of the element in the top left corner of the matrix by putting in its place an element of smaller degree in r.

But if all the remainders $r_{21}(x), \ldots, r_{n 1}(x) ; r_{12}(x), \ldots, r_{1 m}(x)$ are identically equal to zero, then by subtracting from the $i-t$ th row the first multiplied by $q_{1 j}(x),(j=$ $2, \ldots m$), we reduce our polynomial matrix to the form

$$
\left(\begin{array}{cccc}
a_{11}(x) & 0 & \ldots & 0 \tag{2.6}\\
0 & a_{22}(x) & \ldots & a_{2 m}(x) \\
\vdots & \vdots & \ddots & \vdots \\
0 & a_{n 2}(x) & \ldots & a_{n m}(x)
\end{array}\right)
$$

If at least one of the elements $a_{i j}(x)(i=2, \ldots, n, j=2, \ldots m)$ is not divisible without remainder by $a_{11}(x)$, then by adding to the first column that column which contains such an element we arrive at the preceding case and can therefore again replace the element $a_{11}(x)$ by a polynomial of smaller degree.

Since the original element $a_{11}(x)$ had a definite degree and since the process of reducing this degree cannot be continued indefinitely, we must, after a finite number of elementary operations, obtain a matrix of the form

$$
\left(\begin{array}{cccc}
i_{1}(x) & 0 & \ldots & 0 \tag{2.7}\\
0 & b_{22}(x) & \ldots & b_{2 m}(x) \\
\vdots & \vdots & \ddots & \vdots \\
0 & b_{n 2}(x) & \ldots & b_{n m}(x)
\end{array}\right)
$$

in which all the elements $b_{i j}(x)$ are divisible without remainder by $i_{1}(x)$. If among these elements $b_{i j}(x)$ there is one not identically equal to zero, then continuing the same reduction process on the rows numbered $2, \ldots, n$ and the columns $2, \ldots m$, we reduce the matrix (2.7) to the form

$$
\left(\begin{array}{ccccc}
i_{1}(x) & 0 & 0 & \ldots & 0 \\
0 & i_{2}(x) & 0 & \ldots & 0 \\
0 & 0 & c_{33}(x) & \ldots & c_{3 m}(x) \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & c_{n 3}(x) & \ldots & c_{n m}(x)
\end{array}\right)
$$

where $i_{2}(x)$ is divisible without remainder by $i_{1}(x)$ and all the polynomial $c_{i j}(x)$ are divisible without remainder by $i_{2}(x)$ continuing the process further, we finally arrive at a matrix of the form

$$
\left(\begin{array}{ccccccc}
i_{1}(x) & 0 & \ldots & 0 & \ldots & \ldots & 0 \\
0 & i_{2}(x) & & 0 & \ddots & \ldots & 0 \\
\vdots & 0 & \ddots & \vdots & \vdots & \ddots & \vdots \\
\vdots & \vdots & & i_{r}(x) & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 & 0 & \ldots & 0 \\
\vdots & \vdots & & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0 & 0 & \ldots & 0
\end{array}\right)
$$

where the polynomials $i_{1}(x), i_{2}(x), \ldots, i_{r}(x)$ are not identically equal to zero and each is divisible by the preceding one.

By multiplying the first r rows by suitable nonzero numerical factors, we can arrange that the highest coefficients of the polynomials $i_{1}(x), i_{2}(x), \ldots, i_{r}(x)$ are equal to 1 .

Example 2.2

Consider the 1-D matrix

$$
A(x)=\left(\begin{array}{ll}
x & 1 \\
x & 1
\end{array}\right)
$$

where $d_{0}=d_{1}=1, d_{2}=0$ and $i_{1}=1, i_{2}=0$. Hence the Smith form of A is given by :

$$
S_{A(x)}^{C}(x)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

2.1.2 Coprimeness of 1-D poynomial matrices

Now we will see the notion of Coprimeness, which is one "only" in one dimension. In more than one dimensions, this changes and the one become two or three different notions as we will see in the next chapters

Definition 2.9 [21]
Two polynomials are said to be coprime if they have no common factor of degree at least 1.

Definition 2.10 [22]
Let $R(x), N(x), \widehat{N}(x) \in R[x]^{q \times q}, D(x), \widehat{D}(x) \in R[x]^{q \times r}$ be such that

$$
N(x)=R(x) \widehat{N}(x) \text { and } D(x)=R(x) \widehat{D}(x)
$$

$R(x)$ is said to be a common left divisor of $N(x)$ and $D(x) . R(x)$ is said to be a greatest common left divisor (gcld) of $N(x)$ and $D(x)$ if every other common left divisor $L(x)$ of $N(x)$ and $D(x)$ is such that $R(x)=L(x) M(x)$ for some $M(x) \in$ $R[x]^{q \times q}$.

It is important to say that, if the gcld of $N(x)$ and $D(x)$ are unimodular, then $N(x)$ and $D(x)$ are said to be left coprime.

Note: Respectively, common right divisors and greatest common right divisor (gcrd) of $N(x)) \in R[x]^{q \times q}$ and $\left.D(x)\right) \in R[x]^{r \times q}$ can be studied analogously. So, we have

$$
N(x)=\widehat{N}(x) R(x) \text { and } D(x)=\widehat{D}(x) R(x)
$$

and $R(x)$ is said to be a common right divisor of $N(x)$ and $D(x)$. Clearly, $R(x)$ is a gcrd if every other common right divisor $L(x)$ of $N(x)$ and $D(x)$ is such that $R(x)=$ $M(x) L(x)$ for some $(x)) \in R[x]^{q \times q}$.

Moreover, $N(x)$ and $D(x)$ are said to be right coprime if the gcrd of $N(x)$ and $D(x)$ are unimodular.

Computation of greatest common right divisors can be based on capabilities of elementary row operations on a polynomial matrix. To set up this approach we present a preliminary result.

Theorem 2.2 [14]

Suppose $P(x)$ is a $p \times r$ polynomial matrix and $Q(x)$ is a $r \times r$ polynomial matrix. If a unimodular $(p+r) \times(p+r)$ polynomial matrix $U(x)$ and an $r \times r$ polynomial matrix $R(x)$ are such that

$$
U(x)\left[\begin{array}{l}
Q(x) \tag{2.8}\\
P(x)
\end{array}\right]=\left[\begin{array}{c}
R(x) \\
0
\end{array}\right]
$$

the $R(x)$ is a gcrd of $P(x)$ and $Q(x)$.
Proof. Partition $U(x)$ in the form

$$
U(x)=\left[\begin{array}{ll}
U_{11}(x) & U_{12}(x) \tag{2.9}\\
U_{21}(x) & U_{22}(x)
\end{array}\right]
$$

where $U_{11}(x)$ is $r \times r$ and $U_{22}(x)$ is $p \times p$. Then the polynomial matrix $U^{-1}(x)$ can be partitioned similarly as

$$
U^{-1}(x)=\left[\begin{array}{ll}
U^{-1}{ }_{11}(x) & U^{-1}{ }_{12}(x) \tag{2.10}\\
U^{-1}{ }_{21}(x) & U^{-1}{ }_{22}(x)
\end{array}\right]
$$

Using this notation to rewrite (2.12) gives

$$
\left[\begin{array}{l}
Q(x) \\
P(x)
\end{array}\right]=\left[\begin{array}{ll}
U^{-1}{ }_{11}(x) & U^{-1}{ }_{12}(x) \\
U^{-1}{ }_{21}(x) & U^{-1}{ }_{22}(x)
\end{array}\right]\left[\begin{array}{c}
R(x) \\
0
\end{array}\right]
$$

That is,

$$
Q(x)=U^{-1}{ }_{11}(x) R(x), \quad P(x)=U^{-1}{ }_{21}(x) R(x)
$$

Therefore $R(x)$ is a common right divisor of $P(x)$ and $Q(x)$. But, from (2.8), (2.9),

$$
\begin{equation*}
R(x)=U_{11}(x) Q(x)+U_{12}(x) P(x) \tag{2.11}
\end{equation*}
$$

so that if $R_{a}(x)$ is another common right divisor of $P(x)$ and $Q(x)$, say

$$
Q(x)=\hat{Q}_{a}(x) R_{a}(x), \quad P(x)=\hat{P}_{a}(x) R_{a}(x)
$$

then (2.11) gives

$$
R(x)=\left[U_{11}(x) \hat{Q}_{a}(x)+U_{12}(x) \hat{P}_{a}(x)\right] R_{a}(x)
$$

This show $R_{a}(x)$ also is a right divisor of $R(x)$, and thus $R(x)$ is a gcrd of $P(x)$ and $Q(x)$.

To calculate greatest common right divisors using Theorem 2.2, we consider the three types of elementary row operations which referred in Definition 2.2.

The below Theorem is the same as Theorem 2.2, but for greatest common left divisors (gcld) of $P(x)$ and $Q(x)$.

Theorem 2.3 [14]

Suppose $P(x)$ is a $q \times p$ polynomial matrix and $Q(x)$ is a $q \times q$ polynomial matrix. If a unimodular $(q+p) \times(q+p)$ polynomial matrix $U(x)$ and an $q \times q$ polynomial matrix $L(x)$ are such that

$$
\left[\begin{array}{ll}
Q(x) & P(x)
\end{array}\right] U(x)=\left[\begin{array}{ll}
L(x) & 0 \tag{2.12}
\end{array}\right]
$$

the $L(x)$ is a gcld of $P(x)$ and $Q(x)$.

Example 2.3

For

$$
\begin{gathered}
Q(x)=\left(\begin{array}{cc}
x^{2}+x+1 & x+1 \\
x^{2}-3 & 2 x-2
\end{array}\right) \\
P(x)=\left(\begin{array}{ll}
x+2 & 1
\end{array}\right)
\end{gathered}
$$

calculation of a gcrd via Theorem 2.2 is a sequence of elementary row operations.

$$
\begin{aligned}
& M(x)=\left[\begin{array}{c}
Q(x) \\
P(x)
\end{array}\right]=\left[\begin{array}{cc}
x^{2}+x+1 & x+1 \\
x^{2}-3 & 2 x-2 \\
x+2 & 1
\end{array}\right] \stackrel{\Gamma 1 \leftrightarrow \Gamma 3}{ }\left[\begin{array}{cc}
x+2 & 1 \\
x^{2}-3 & 2 x-2 \\
x^{2}+x+1 & x+1
\end{array}\right] \\
& =\left[\begin{array}{cc}
x+2 & 1 \\
(x-2)(x+2)+1 & 2 x-2 \\
(x-2)(x+2)+3 & x+1
\end{array}\right] \\
& \begin{array}{l}
\overrightarrow{\Gamma 2} \rightarrow \Gamma 2-(x-2) \Gamma 1 \\
\Gamma 3 \rightarrow \Gamma 3-(x-2) \Gamma 1
\end{array}\left[\begin{array}{cc}
x+2 & 1 \\
1 & x \\
3 & 3
\end{array}\right] \overrightarrow{\Gamma 1 \leftrightarrow \Gamma 2}\left[\begin{array}{cc}
1 & x \\
x+2 & 1 \\
3 & 3
\end{array}\right] \\
& \overrightarrow{\Gamma 2 \rightarrow \Gamma 2-(x+2) \Gamma 1}\left[\begin{array}{cc}
1 & x \\
0 & -(x+2) \\
3 & 3
\end{array}\right] \xrightarrow[\Gamma 3 \rightarrow \frac{1}{3} \Gamma 3]{ }\left[\begin{array}{cc}
1 & x \\
0 & -(x+2) \\
1 & 1
\end{array}\right] \\
& \overline{\Gamma 1 \leftrightarrow \Gamma 3}\left[\begin{array}{cc}
1 & 1 \\
0 & -(x+2) \\
0 & x
\end{array}\right] \overrightarrow{\Gamma 2 \rightarrow \Gamma 2+\Gamma 3}\left[\begin{array}{cc}
1 & 1 \\
0 & -2 \\
0 & x
\end{array}\right]
\end{aligned}
$$

$$
\overrightarrow{\Gamma 2 \rightarrow-\frac{1}{2} \Gamma 2}\left[\begin{array}{cc}
1 & 1 \\
0 & 1 \\
0 & x
\end{array}\right] \overrightarrow{\Gamma 3 \rightarrow \Gamma 3-x \Gamma 2}\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]
$$

This calculation shows that a gcrd is the identity, and $P(x)$ and $Q(x)$ are right coprime.

There are two different charactirizations of right coprimeness that are used in the sequel.

Theorem 2.4 [14]

For a $p \times r$ polynomial matrix $P(x)$ and a nonsingular $r \times r$ polynomial matrix $Q(x)$, the following statements are equivalent.
(i) The polynomial matrices $P(x)$ and $Q(x)$ are right coprime.
(ii) There exist an $r \times p$ polynomial matrix $X(x)$ and an $r \times r$ polynomial matrix $Y(x)$ satisfying the x_{0} called Bezout identity

$$
\begin{equation*}
X(x) P(x)+Y(x) Q(x)=I_{r} \tag{2.13}
\end{equation*}
$$

(iii) For every complex number x_{0},

$$
\operatorname{rank}\left[\begin{array}{l}
Q\left(x_{0}\right) \tag{2.14}\\
P\left(x_{0}\right)
\end{array}\right]=r
$$

Proof. Beginning a demonstration that each claim implies the next, first we show that (i) implies (ii). If $P(x)$ and $Q(x)$ are right coprime, then reduction to row Hermite form as in (2.8) yields polynomial matrices $U_{11}(x)$ and $U_{12}(x)$ such that

$$
U_{11}(x) Q(x)+U_{12}(x) P(x)=I_{r}
$$

and this has the form of (2.13).
To prove that (ii) implies (iii), write the condition (2.13) in the matrix form

$$
\left[\begin{array}{ll}
Y(x) & X(x)
\end{array}\right]\left[\begin{array}{l}
Q(x) \\
P(x)
\end{array}\right]=I_{r}
$$

If x_{0} is a complex number for which

$$
\operatorname{rank}\left[\begin{array}{l}
Q\left(x_{0}\right) \\
P\left(x_{0}\right)
\end{array}\right]<r
$$

then we have a rank contradiction.
To show (iii) implies (i), suppose that (2.14) holds and $R(x)$ is a common right divisor of $P(x)$ and $Q(x)$. Then for some $p \times r$ polynomial matrix $\tilde{P}(x)$ and some $r \times r$ polynomial matrix $\tilde{Q}(x)$.

$$
\left[\begin{array}{l}
Q(x) \tag{2.15}\\
P(x)
\end{array}\right]=\left[\begin{array}{l}
\tilde{Q}(x) \\
\tilde{P}(x)
\end{array}\right] R(x)
$$

If $\operatorname{det} R(x)$ is a polynomial of degree at least one and x_{0} is a root of this polynomial, then $R\left(x_{0}\right)$ is a complex matrix of less than full rank. Thus we obtain the contradiction

$$
\operatorname{rank}\left[\begin{array}{l}
Q\left(x_{0}\right) \\
P\left(x_{0}\right)
\end{array}\right] \leq \operatorname{rank} R\left(x_{0}\right)<r
$$

Therefore $\operatorname{det} R(x)$ is a nonzero constant, that is, $R(x)$ is unimodular. This proves that $P(x)$ and $Q(x)$ are right coprime.

Respectively, for the case of left coprimeness, we have the next theorem:
Theorem 2.5 [14]
For a $q \times p$ polynomial matrix $P(x)$ and a nonsingular $q \times q$ polynomial matrix $Q(x)$, the following statements are equivalent.
(i) The polynomial matrices $P(x)$ and $Q(x)$ are left coprime.
(ii) There exist an $p \times q$ polynomial matrix $X(x)$ and an $q \times q$ polynomial matrix $Y(x)$ such that

$$
\begin{equation*}
P(x) X(x)+Q(x) Y(x)=I_{q} \tag{2.16}
\end{equation*}
$$

(iii) For every complex number x_{0},

$$
\begin{equation*}
\operatorname{rank}\left[Q\left(x_{0}\right) \quad P\left(x_{0}\right)\right]=q \tag{2.17}
\end{equation*}
$$

Definition 2.11 [12]
A pair $\{P(x), R(x)\}(\{P(x), Q(x)\})$ of polynomial matrices which has the same number of columns (rows) is said to be relatively right prime if and only if their gcrd (gcld) are unimodular matrices.

Note: If two polynomial matrices may be relatively right prime but not left prime and vice versa. Above is given an example in which we can see that:

Example 2.4

Consider the polynomial matrices

$$
P(x)=\left(\begin{array}{cc}
x^{2} & -1 \\
-x & x^{2}
\end{array}\right)
$$

and

$$
R(x)=\left(\begin{array}{cc}
x & -x \\
0 & 1
\end{array}\right)
$$

To find a gerd $G_{R}(x)$ of $P(x)$ and $R(x)$ we reduce the composite matrix

$$
\left[\begin{array}{l}
P(x) \\
R(x)
\end{array}\right]=\left[\begin{array}{cc}
x^{2} & -1 \\
-x & x^{2} \\
x & -x \\
0 & 1
\end{array}\right]
$$

to upper right triangular form .
It is clear that by multiplying the last row [0 $\left.\begin{array}{ll}0 & 1\end{array}\right]$ of composite matrix by the appropriate monomial and adding the resultant expressions to the remaining rows, all other elements in the second column can be zeroed. The first column terms can also be set equal to zero, with the exception of an x, by employing an analogous procedure. Therefore, it is clear that

$$
G_{R}(x)=\left[\begin{array}{ll}
x & 0 \\
0 & 1
\end{array}\right]
$$

is a gcrd of $P(x)$ and $R(x)$.
To find a gcld $G_{L}(x)$ of $P(x)$ and $R(x)$ we reduce the composite matrix $\left[\begin{array}{ll}P(x) & R(x)\end{array}\right]=\left[\begin{array}{cccc}x^{2} & -1 & x & -x \\ -x & x^{2} & 0 & 1\end{array}\right]$ to lower left triangular form by adding the third and fourth column of the composite matrix, we obtain the column vector $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ which can be used to zero all other second row entries. The column vector $\left[\begin{array}{c}-1 \\ 0\end{array}\right]$ is left as the second column of the remaining matrix and can be used to zero the remaining first row entries. It is therefore clear that the two dimensional identity matrix is a gcld of $P(x)$ and $R(x)$.

2.2 Equivalences in 1-D polynomial matrices

2.2.1 Equivalence relation

Initially, it is important for next chapters to understand better the notion of equivalence. In this chapter, we will define when we have an equivalence relation.

Definition 2.12 [10]
Let $F \in\{\mathbb{R}, \mathbb{C}\}$ and $F \times F$ the set of ordered pairs of elements in F. A subset S of $F \times F$ is called a relation on F and we write $a \sim_{s} b$ if the pair $(a, b) \in S$.

Definition 2.13 [10]
A relation S is called an equivalence relation if

1. $\quad a \sim_{s} a$ for all a in F (reflexivity)
2. $a \sim_{s} b \Rightarrow b \sim_{s} a$ (symmetry)
3. $a \sim_{s} b$ and $b \sim_{s} c \Rightarrow a \sim_{s} c$ (transitivity)

Whenever \sim is an equivalence relation on F, then

$$
\begin{equation*}
[a]=\{b \in F \mid b \sim a\} \tag{2.18}
\end{equation*}
$$

is called the equivalence class of a with respect to \sim, and the set $\{[a] \mid a \in F\}$ of all equivalence classes is denoted by F / \sim.

Definition 2.14

If T is another set then a function $f: S \rightarrow T$ is called invariant element of R when

$$
\begin{equation*}
a \sim{ }_{s} b \Rightarrow f(a)=f(b) \tag{2.19}
\end{equation*}
$$

So, the $f: S \rightarrow T$ is sn invariant element of R if all the elements $b \in T$ such that $(a, b) \in R$ have the same image through f.
and complete invariant element of R when

$$
\begin{equation*}
a \sim_{s} b \Leftrightarrow f(a)=f(b) \tag{2.20}
\end{equation*}
$$

2.2.2 Unimodular Equivalence

Definition 2.15 [13]

Two polynomial matrices $A(x)$ and $B(x)$ are called 1)left-equivalent, 2)right equivalent, 3)equivalent if one of them can be obtained from the other by means of 1)left-elementary, 2)right-elementary, 3)left and right elementary operations, respectively.

Let $B(x)$ be obtained from $A(x)$ by means of the left-elementary operations corresponding to $S_{1}, S_{2}, \ldots, S_{p}$. Then

$$
B(x)=S_{p} S_{p-1} \ldots S_{1} A(x)
$$

Denoting the product $S_{p} S_{p-1} \ldots S_{1}$ by $P(x)$, we write (2.22) in the form

$$
\begin{equation*}
B(x)=P(x) A(x) \tag{2.21}
\end{equation*}
$$

where $P(x)$, like each of the matrices $S_{1}, S_{2}, \ldots, S_{p}$ has a constant nonzero determinant.

In the case of right equivalence of the polynomial matrices $A(x)$ and $B(x)$ we shall have instead of (2.21) the equation

$$
\begin{equation*}
B(x)=A(x) Q(x) \tag{2.22}
\end{equation*}
$$

And finally in the case of equivalence we have the equation:

$$
\begin{equation*}
B(x)=P(x) A(x) Q(x) \tag{2.23}
\end{equation*}
$$

Knowing relations (2.21), (2.22) and (2.23) we say again Definition 2.13, a bit different:

Definition 2.16 [13]

Two rectangular matrices $A(x)$ and $B(x)$ are called 1)left-equivalent, 2)right equivalent, 3)equivalent(unimodular equivalence) if

1) $B(x)=P(x) A(x)$
2) $B(x)=A(x) Q(x)$
3) $B(x)=P(x) A(x) Q(x)$
respectively, where $P(x)$ and $Q(x)$ are polynomial square matrices with constant nonzero determinants.

Definition 2.17 [15]

Two $n \times m$ polynomial matrices $P_{1}(x), P_{2}(x)$ are said to be unimodular equivalent (u.e) if there exist unimodular matrices $L(x), R(x)$ such that

$$
\begin{equation*}
P_{2}(x)=L(x) P_{1}(x) R(x) \tag{2.24}
\end{equation*}
$$

Theorem 2.6

The relation generated by (2.24) is an equivalence relation.

Proof.

a) Reflexive law:

Let $P_{1}(x) \in R[z]^{n \times m}$. We have $I_{n} P_{1}(x) I_{m}=P_{1}(x)$, which is valid.
a) Symmetric law:

Let $P_{1}(x), P_{2}(x) R[x]^{n \times m}$ polynomial matrices which are unimodular equivalent so we have $L(z) \in R[x]^{n \times n}, R(z) \in R[x]^{m \times m}$ such that $P_{2}(x)=L(x) P_{1}(x) R(x)$, then we will have $L^{-1}(x) P_{2}(x)=P_{1}(x) R(x) \Leftrightarrow$ $L^{-1}(x) P_{2}(x) R^{-1}(x)=P_{1}(x)$, where $L^{-1}(x), R^{-1}(x) \in R[x]^{n \times n}$ because they are unimodular.
b) Transitive law:

Let $P_{1}(x), P_{2}(x) \in R[x]^{n \times m}$ unimodular equivalent matrices, so we have $L(z), \in R[x]^{n \times n}, R(x) \in R[x]^{m \times m}$ unimodular matrices such that

$$
\begin{equation*}
P_{2}(x)=L(x) P_{1}(x) R(x) \tag{2.25}
\end{equation*}
$$

and $P_{2}(x), P_{3}(x) \in R[x]^{n \times m}$ unimodular equivalent matrices, so we have $L^{\prime}(x), \in R[x]^{n \times n}, R^{\prime}(x) \in R[x]^{m \times m}$ unimodular matrices such that

$$
\begin{equation*}
P_{3}(x)=L^{\prime}(x) P_{2}(x) R^{\prime}(x) \tag{2.26}
\end{equation*}
$$

from (2.26), we have

$$
\begin{align*}
& L^{\prime-1}(x) P_{3}(x)=P_{2}(x) R^{\prime}(x) \Leftrightarrow L^{\prime-1}(x) P_{3}(x) R^{\prime-1}(x)=P_{2}(x) \tag{2.27}\\
&(2.25) \stackrel{(2.27)}{\Longleftrightarrow} L(x) P_{1}(x) R(x)=L^{\prime-1}(x) P_{3}(x) R^{\prime-1}(x) \\
& \Leftrightarrow P_{1}(x) R(x)=L^{-1}(x) L^{\prime-1}(x) P_{3}(x) R^{\prime-1}(x)
\end{align*}
$$

$$
\begin{aligned}
& \Leftrightarrow P_{1}(x)=L^{-1}(x) L^{\prime-1}(x) P_{3}(x) R^{\prime-1}(x) R^{-1}(x) \\
& \Leftrightarrow P_{1}(x)=\left[L(x) L^{\prime}(x)\right]^{-1} P_{3}(x)\left[R^{\prime}(x) R(x)\right]^{-1}
\end{aligned}
$$

where $\left[L(x) L^{\prime}(x)\right]^{-1}$ and $\left[R^{\prime}(x) R(x)\right]^{-1} \in R[x]^{n \times n}$ because they are unimodular.

Consequently, unimodular equivalence is an equivalence relation.

Note: Invariant polynomials and the determinantal divisors of a polynomial matrix $P(x) \in R[z]^{n \times m}$ are defined uniquely, so the Smith form in \mathbb{C} of a polynomial matrix is unique. Thus, we can define as an algebraic structure of a polynomial matrix in \mathbb{C} the structure of the Smith form in \mathbb{C} of this matrix, which its characteristics are zeros of this polynomial matrix.

It will be proved that the unimodular equivalence in \mathbb{C} between two polynomial matrices $P_{1}(x)$ and $P_{2}(x) \in R[z]^{n \times m}$ has the property retain:

1. the Smith form in \mathbb{C} of $P_{1}(x)$ and $P_{2}(x)$
2. the invariant polynomials of $P_{1}(x)$ and $P_{2}(x)$
3. the determinantal divisors of $P_{1}(x)$ and $P_{2}(x)$.

Proof.

Let $P_{1}(x)$ and $P_{2}(x)$ be two equivalent polynomial matrices. Then they are obtained from one another by the means of elementary operations. But an easy verification shows immediately that the elementary operations change neither the rank of $P_{2}(x)$ nor the polynomials $D_{1}(x), D_{2}(x), \ldots, D_{r}(x)$. For when we apply to the identity (2.24) the formula that expresses a minor of a product of matrices by the minors of the factors, we obtain for an arbitrary minor of $P_{2}(x)$ the expression

$$
\begin{aligned}
& P_{2}\left(\begin{array}{llll}
j_{1} & j_{2} & \ldots & j_{p} \\
k_{1} & k_{2} & \ldots & k_{p}
\end{array} ; x\right) \\
& =\sum_{\substack{1 \leq a_{1}<a_{2}<\ldots<a_{p} \leq m \\
1 \leq \beta_{1}<\beta_{2}<\ldots<\beta_{p} \leq m}} L\left(\begin{array}{llll}
j_{1} & j_{2} & \ldots & j_{p} \\
a_{1} & a_{2} & \ldots & a_{p}
\end{array}\right) P_{2}\left(\begin{array}{llll}
\alpha_{1} & \alpha_{2} & \ldots & \alpha_{p} \\
\beta_{1} & \beta_{2} & \ldots & \beta_{p} ; x
\end{array}\right) R\left(\begin{array}{llll}
\beta_{1} & \beta_{2} & \ldots & \beta_{p} \\
k_{1} & k_{2} & \ldots & k_{p}
\end{array}\right)
\end{aligned}
$$

$$
(p=1,2, \ldots, \min (m, n))
$$

Hence it follows that all minors of order r or greater of the matrix $P_{2}(x)$, is divisible by $D_{p}(x)(p=1,2, \ldots, \min (m, n))$. But the matrices $P_{1}(x)$ and $P_{2}(x)$ can exchange roles.

Therefore $r \leq r^{*}$ and $D_{p}(x)$ is divisible by $D_{p}{ }^{*}(x)(p=1,2, \ldots, \min (m, n))$.
Hence

$$
r \leq r^{*}, D_{1}{ }^{*}(x)=D_{1}(x), D_{2}^{*}(x)=D_{2}(x), \ldots, D_{r}^{*}(x)=D_{r}(x) .
$$

Since elementary operations do not change the polynomials
$D_{1}{ }^{*}(x), D_{2}{ }^{*}(x), \ldots, D_{r}{ }^{*}(x)$, they also leave the polynomials $i_{1}(x), i_{2}(x), \ldots, i_{r}(x)$ unchanged.

Thus, the polynomials $i_{1}(x), i_{2}(x), \ldots, i_{r}(x)$ remain invariant on transition from one matrix to another equivalent one.

If the polynomial matrix has the canonical diagonal form (Smith form), then it is easy to see that for this matrix

$$
D_{1}(x)=a_{1}(x), D_{2}(x)=a_{1}(x) a_{2}(x), \ldots, D_{r}(x)=a_{1}(x) a_{2}(x), \ldots, a_{r}(x)
$$

But then, the diagonal polynomial in canonical diagonal form coincide with the invariant polynomials

$$
i_{1}(x)=a_{1}(x), i_{2}(x)=a_{2}(x), \ldots, i_{r}(x)=a_{r}(x)
$$

Here $i_{1}(x), i_{2}(x), \ldots, i_{r}(x)$ are at the same time the invariant polynomials of the original matrix $P_{2}(x)$, because it is equivalent to canonical diagonal form.

2.2.3 Equivalence of Binomials

We consider two square matrices $A(x)$ and $B(x)$ of order n in which all the elements are of degree not higher than 1 in x. These polynomials matrices may be represented in the form of matrix binomials:

$$
\begin{equation*}
A(x)=A_{0} x+A_{1}, B(x)=B_{0} x+B_{1} \tag{2.28}
\end{equation*}
$$

We shall assume that these binomials are of degree 1 and regular, i.e. that $\left|A_{0}\right| \neq 0$, $\left|B_{0}\right| \neq 0$.

Below is given a criterion for the equivalence of such binomials:
Theorem 2.7 [13]
If two regular binomials of the first degree $A_{0} x+A_{1}$ and $B_{0} x+B_{1}$ are equivalent, then they are strictly equivalent, i.e., in the identity

$$
\begin{equation*}
B_{0} x+B_{1}=P(x)\left(A_{0} x+A_{1}\right) Q(x) \tag{2.29}
\end{equation*}
$$

the matrices $P(x)$ and $Q(x)$ - with constant non-zero determinants- can be replaced by constant non-singular matrices P and Q :

$$
\begin{equation*}
B_{0} x+B_{1}=P\left(A_{0} x+A_{1}\right) Q \tag{2.30}
\end{equation*}
$$

Proof. Since the determinant of $P(x)$ does not depend on x and is different from zero, the inverse matrix $M(x)=P^{-1}(x)$ is also a polynomial matrix. With the help of this matrix we write (2.29) in the form

$$
\begin{equation*}
M(x)\left(B_{0} x+B_{1}\right)=\left(A_{0} x+A_{1}\right) Q(x) \tag{2.31}
\end{equation*}
$$

Regarding $M(x)$ and $Q(x)$ as matrix polynomials, we divide $M(x)$ on the left by $A_{0} x+A_{1}$ and $Q(x)$ on the right by $B_{0} x+B_{1}$:

$$
\begin{align*}
& M(x)=\left(A_{0} x+A_{1}\right) S(x)+M \tag{2.32}\\
& Q(x)=T(x)\left(B_{0} x+B_{1}\right)+Q \tag{2.33}
\end{align*}
$$

here M and Q are constant square matrices (independent of x) of order n. We substitute these expressions for $M(x)$ and $Q(x)$ in (2.31). After a few small transformations, we obtain

$$
\begin{equation*}
\left(A_{0} x+A_{1}\right)[T(x)-S(x)]\left(B_{0} x+B_{1}\right)=M\left(B_{0} x+B_{1}\right)-\left(A_{0} x+A_{1}\right) Q . \tag{2.34}
\end{equation*}
$$

The difference in the brackets must be identically equal to zero; for otherwise the product on the left-hand side of (2.34) would be of degree ≥ 2, while the polynomial on the right-hand side of the equation is of degree not higher than 1 . Therefore

$$
\begin{equation*}
S(x)=T(x) \tag{2.35}
\end{equation*}
$$

But then we obtain from (2.34):

$$
\begin{equation*}
M\left(B_{0} x+B_{1}\right)=\left(A_{0} x+A_{1}\right) Q \tag{2.36}
\end{equation*}
$$

We shall now show that M is a non-singular matrix. For this purpose we divide $P(x)$ on the left by $B_{0} x+B_{1}$:

$$
\begin{equation*}
P(x)=\left(B_{0} x+B_{1}\right) U(x)+P \tag{2.37}
\end{equation*}
$$

From (2.31), (2.32) and (2.37) we deduce:

$$
\begin{gather*}
E=M(x) P(x)=M(x)\left(B_{0} x+B_{1}\right) U(x)+M(x) P \\
=\left(A_{0} x+A_{1}\right) Q(x) U(x)+\left(A_{0} x+A_{1}\right) S(x) P+M P \\
=\left(A_{0} x+A_{1}\right)[Q(x) U(x)+S(x) P]+M P \tag{2.38}
\end{gather*}
$$

Since the last term of this chain of equations must be of degree zero in x (because it is equal to E), the expression in brackets must be identically equal to zero. But then from (2.38)

$$
\begin{equation*}
M P=E . \tag{2.39}
\end{equation*}
$$

so that $|M| \neq 0$ and $M^{-1}=P$.
Multiplying both sides of (2.36) on the left by P we obtain:

$$
B_{0} x+B_{1}=P\left(A_{0} x+A_{1}\right) Q .
$$

The fact that P is non-singular follows from (2.39). That P and Q are non-singular also follows directly from (2.30), since this identity implies

$$
B_{0}=P A_{0} Q
$$

and therefore

$$
|P|\left|A_{0}\right||Q|=\left|B_{0}\right| \neq 0 .
$$

This completes the proof of the theorem.

2.2.4 Extended Unimodular Equivalence

Firstly, we will see an important lemma, which will help us in the next theorem.

Lemma 2.1 [18]

Let the partitioned square polynomial matrix

$$
\left(\begin{array}{ll}
A(x) & B(x) \\
C(x) & D(x)
\end{array}\right)
$$

be unimodular, then
(i) $\quad A(x), B(x)$ (respectively $C(x), D(x)$) are relatively left prime.
(ii) $\quad A(x), C(x)$ (respectively $B(x), D(x)$) are relatively right prime.

Definition 2.18 [18]
Let $\mathcal{P}(m, l)$ be the class of $(r+m) \times(r+l)$ polynomial matrices where l and m are fixed integers and r ranges over all integers which are greater than $\max (-m,-l)$.
Let $P(x), P_{1}(x) \in \mathcal{P}(m, l)$ and consider the relation generated by

$$
\begin{equation*}
M(x) P(x)=P_{1}(x) N(x) \tag{2.40}
\end{equation*}
$$

where P_{1} and M are relatively left prime and P and N are relatively right prime.

Theorem 2.8 [18]

The relation generated by (2.40) is an equivalence relation.

Proof.

(i) Reflexive law:

In the first place the relation is reflexive, since (2.40) holds for $P \equiv P_{1}$ with M and N identity matrices of the appropriate sizes. M and N thus have the correct relative primeness properties.
(ii) Symmetric law:

Secondly, for symmetry suppose, P and P_{1} satisfy (2.40), which may be written as

$$
\left(M, P_{1}\right)\left[\begin{array}{c}
P \tag{2.41}\\
-N
\end{array}\right]=0
$$

Since M, P are relatively left prime there exist polynomial matrices X_{1} and X_{2} (which are themselves relatively right prime), such that

$$
\left(M, P_{1}\right)\left[\begin{array}{l}
X_{1} \tag{2.42}\\
X_{2}
\end{array}\right]=I_{r_{1}+m}
$$

Similarly, there exist relatively left prime polynomial matrices \hat{X}_{3}, \hat{X}_{4} such that

$$
\left(\hat{X}_{3}, \widehat{X}_{4}\right)\left[\begin{array}{c}
P \tag{2.43}\\
-N
\end{array}\right]=I_{r+l}
$$

Consider now the matrix pair X_{3}, X_{4} defined by

$$
\left(X_{3}, X_{4}\right)=\left(\hat{X}_{3}, \widehat{X}_{4}\right)\left[I_{r_{1}+m+r+l}-\left[\begin{array}{l}
X_{1} \tag{2.44}\\
X_{2}
\end{array}\right]\left(\begin{array}{ll}
M & \left.\left.P_{1}\right)\right]
\end{array}\right.\right.
$$

Then

$$
\begin{align*}
& \left(X_{3}, X_{4}\right)\left[\begin{array}{c}
P \\
-N
\end{array}\right]=\left(\hat{X}_{3}, \widehat{X}_{4}\right)\left[\begin{array}{c}
P \\
-N
\end{array}\right]-\left(\hat{X}_{3}, \widehat{X}_{4}\right)\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right]\left(\begin{array}{ll}
M & P_{1}
\end{array}\right)\left[\begin{array}{c}
P \\
-N
\end{array}\right] \tag{2.45}\\
& =I_{r+l} \text {, from (2.43) and (2.41) }
\end{align*}
$$

Also,

$$
\begin{align*}
\left(X_{3}, X_{4}\right)\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right] & =\left(\hat{X}_{3}, \widehat{X}_{4}\right)\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right]-\left(\hat{X}_{3}, \widehat{X}_{4}\right)\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right]\left(\begin{array}{ll}
\left.P_{1}\right)
\end{array}\right]\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right] \tag{2.46}\\
& =0, \text { from }(2.42)
\end{align*}
$$

The relations (2.41), (2.42), (2.45) and (2.46) may be assembled as:

$$
\left[\begin{array}{ll}
M & P_{1} \tag{2.47}\\
X_{3} & X_{4}
\end{array}\right]\left[\begin{array}{cc}
X_{1} & P \\
X_{2} & -N
\end{array}\right]=\left[\begin{array}{cc}
I_{r_{1}+m} & 0 \\
0 & I_{r+l}
\end{array}\right]
$$

But the two matrices on the left-hand side of (2.47) are both square and of the same dimensions. Consequently the one is the inverse of the other. Also, since both are polynomial, they are both unimodular. By the properties of an inverse

$$
\left[\begin{array}{cc}
X_{1} & P \\
X_{2} & -N
\end{array}\right]\left[\begin{array}{cc}
M & P_{1} \\
X_{3} & X_{4}
\end{array}\right]=\left[\begin{array}{cc}
I_{r+m} & 0 \\
0 & I_{r_{1}+l}
\end{array}\right]
$$

From the (1,2) block equations we obtain:

$$
\left(X_{1}, P\right)\left[\begin{array}{l}
P_{1} \tag{2.48}\\
X_{4}
\end{array}\right]=0
$$

Also by Lemma 2.1 X_{1} and X_{4} have the correct co-primeness properties as required by the relation of Lemma 2.1, since

$$
\left[\begin{array}{cc}
X_{1} & P \\
X_{2} & -N
\end{array}\right] ;\left[\begin{array}{cc}
M & P_{1} \\
X_{3} & X_{4}
\end{array}\right]
$$

are unimodular. Thus the symmetry of (2.40) is proved.
(iii) Transitive law:

Finally for the transitivity of (2.40) suppose:

$$
\left.\begin{array}{rl}
M P & =P_{1} N \\
M^{\prime} P_{1} & =P_{2} N^{\prime} \tag{2.49}
\end{array}\right\}
$$

with the usual relative primeness properties holding.
From the first of these equations,

$$
M^{\prime} M P=M^{\prime} P_{1} N
$$

and substituting from the second gives

$$
\begin{equation*}
M^{\prime} M P=P_{2} N^{\prime} N \tag{2.50}
\end{equation*}
$$

It must now be shown that the required relative primeness conditions are met. From the relative primeness properties associated with (3.36), there exist polynomial matrices $Q_{1}, Q_{2}, Q_{3}, Q_{4}$ such that

$$
\begin{align*}
& M Q_{1}+P_{1} Q_{2}=I_{r_{1}+m} \tag{2.51}\\
& M^{\prime} Q_{3}+P_{2} Q_{4}=I_{r_{2}+m} \tag{2.52}
\end{align*}
$$

From (2.51),

$$
M^{\prime} M Q_{1}+M^{\prime} P_{1} Q_{2}=M^{\prime}
$$

i.e.

$$
M^{\prime} M Q_{1}+P_{2} N^{\prime} Q_{2}=M^{\prime}, \text { from (2.49) }
$$

Post-multiplying by Q_{3} gives:

$$
\begin{align*}
M^{\prime} M Q_{1} Q_{3}+P_{2} N^{\prime} Q_{2} Q_{3} & =M^{\prime} Q_{3} \\
& =I_{r_{2}+m}-P_{2} Q_{4}, \text { from } \\
M^{\prime} M Q_{1} Q_{3}+P_{2}\left(N^{\prime} Q_{2} Q_{3}\right. & \left.-Q_{4}\right)=I_{r+m} \tag{2.53}
\end{align*}
$$

(2.53) thus proves that $M^{\prime} M$ and P_{2} are relative left prime. Similarly P and $N^{\prime} N$ are relative right prime, and transitivity follows from (2.50). This completes the proof of the theorem.

Note: The equivalence relation generated by equation (2.40) will be called extended unimodular equivalence (eue). Note that the definition of eue contains as a special case the usual unimodular equivalence ue of polynomial matrices. Thus we have:

Proposition 2.1 [18]

Two polynomial matrices of the same dimensions that are ue are also eue.
As a consequence of this result and Theorem 2.8 we have

Proposition 2.2 [18]

If two polynomial matrices in $\mathcal{P}(m, l)$ are eue then so are their respective Smith form.

Proof. Suppose $P(x), P_{1}(x) \in \mathcal{P}(m, l)$ are eue, then

$$
\begin{equation*}
M P=P_{1} N \tag{2.54}
\end{equation*}
$$

with the usual relative primeness conditions holding.

Let $S_{P(x)}(x)$ and $S_{P_{1}(x)}(x)$ denote the respective Smith forms of $P(x)$ and $P_{1}(x)$ respectively, then

$$
\begin{equation*}
P=L S_{P(x)} R, \quad P_{1}=L_{1} S_{P_{1}(x)} R_{1} \tag{2.55}
\end{equation*}
$$

for unimodular matrices L, L_{1}, R, R_{1}.
Using (2.55) in (2.54) gives

$$
M L S_{P(x)} R=L_{1} S_{P_{1}(x)} R_{1} N
$$

i.e.

$$
\begin{equation*}
L_{1}{ }^{-1} M L S_{P(x)}=S_{P_{1}(x)} R_{1} N R_{1}^{-1} \tag{2.56}
\end{equation*}
$$

Now $L_{1}{ }^{-1} M L$ and $S_{P_{1}(x)}$ are relative left prime since

$$
\left(L_{1}{ }^{-1} M L, S_{P_{1}(x)}\right)=L_{1}{ }^{-1}\left[\begin{array}{cc}
L & 0 \\
0 & R_{1}{ }^{-1}
\end{array}\right]
$$

with the first and third matrices on the right-hand side being unimodular, and M, P_{1} are relative left prime. Similarly, $S_{P(x)}$ and $R_{1} N R_{1}^{-1}$ are relative right prime, and so (2.56) proves the proposition.

2.3 2-D Polynomial Matrices

In this chapter, we will see what it happens in 2-D polynomial matrices, where we have polynomials with two indeterminates. Are the notions the same as in one indeterminate? If they aren't, what's different?

In 1- D theory, we saw that elementary matrices play a crucial role and they are subclass of unimodular matrices over a ring unimodular. Unimodular matrices can be formed as a product of elementary matrices. In this chapter, we will study systems with more than one variables, where not all unimodular matrices can be formed as a product of elementary matrices. This happens due to the absence of a division algorithm in $R\left[x_{1}, x_{2}, \ldots, x_{n}\right]$.

The existence of a division algorithm for Euclidean polynomial rings forms the basis for the algorithmic derivation of many canonical forms and solution techniques at the heart of 1-D polynomial equations. In case of $n \geq 2$ progress is possible by noting that any polynomial ring can be regarded as a subring of a larger ring with a division algorithm. The exact mechanism is to favor one of the indeterminates and consider elements of the ring to be polynomial in this indeterminate with coefficients rational in the others. If, for example, x_{n} is the favored indeterminate the resulting ring is denoted $R\left(x_{1}, x_{2}, \ldots, x_{n-1}\right)\left[x_{n}\right]$.

Consider the 2-D system matrix in the general form

$$
P\left(x_{1}, x_{2}\right)=\left(\begin{array}{cc}
T\left(x_{1}, x_{2}\right) & U\left(x_{1}, x_{2}\right) \tag{2.57}\\
-V\left(x_{1}, x_{2}\right) & W\left(x_{1}, x_{2}\right)
\end{array}\right)
$$

where $T\left(x_{1}, x_{2}\right), U\left(x_{1}, x_{2}\right), V\left(x_{1}, x_{2}\right)$ and $W\left(x_{1}, x_{2}\right)$ are respectively $r_{1} \times r_{2}, r_{1} \times l$, $m \times r_{2}$ and $m \times l$ polynomial, where $r_{1}<r_{2}+l$ and $r_{2}<r_{1}+m$.

Let $P\left(x_{1}, x_{2}\right)$ be an $m \times l$ polynomial matrix, then $P\left(x_{1}, x_{2}\right)$ can be written as:

$$
\begin{equation*}
P\left(x_{1}, x_{2}\right)=P_{0}\left(x_{2}\right)+P_{1}\left(x_{2}\right) x_{1}+\cdots+P_{q}\left(x_{2}\right) x_{1}{ }^{q} \tag{2.58}
\end{equation*}
$$

where $P_{i}\left(x_{2}\right), i=0,1, \ldots, q$ are $m \times l$ polynomial matrices over $R\left[x_{2}\right]$ and

$$
\begin{equation*}
P_{q}\left(x_{2}\right) \neq 0 \tag{2.59}
\end{equation*}
$$

Obviously, the matrix $P\left(x_{1}, x_{2}\right)$ can be expressed in a similar fashion in terms of powers of x_{2}, i.e.

$$
\begin{equation*}
P\left(x_{1}, x_{2}\right)=Q_{0}\left(x_{1}\right)+Q_{1}\left(x_{1}\right) x_{2}+\cdots+Q_{p}\left(x_{1}\right) x_{2}{ }^{p} \tag{2.60}
\end{equation*}
$$

where $Q_{i}\left(x_{1}\right), i=0,1, \ldots, p$ are $m \times l$ polynomial matrices over $R\left[x_{1}\right]$ and

$$
\begin{equation*}
Q_{p}\left(x_{1}\right) \neq 0 \tag{2.61}
\end{equation*}
$$

Such as in Definition 2.2 for 1-D case, now we will present 2-D elementary row (respectively column) over the ring of two-variable polynomials, as we said, it is not Euclidean and there is not the direct dependence between the equivalence of twovariable monomial matrices.

Definition 2.19 [25]
The following three elementary row (column) operations on the polynomial matrix $P\left(x_{1}, x_{2}\right)$ with coefficients in $R\left[x_{1}, x_{2}\right]$ are defined
(i) the multiplication of the $i-t h$ row (respectively column) by the scalar $c \in R$
(ii) the addition to the $i-t h$ row (respectively column) of the $j-t$ row (respectively column) multiplied by the polynomial $b\left(x_{1}, x_{2}\right)$
(iii) the interchange of the $i-t h$ and row $j-t h$ (respectively column)

2.3.1 Notions of Coprimeness

In case of 2-D polynomial matrices are two distinct definitions, minor and zero coprimeness and in the case of $n \geq 3$ we have one more different definition, factor coprimeness. In the case of 2-D polynomial matrices the notions minor and factor coprimeness are identical. In this thesis, we will examine only the case with two indeterminates.

Definition 2.20 [23]
The matrices T, U in (2.57) are said to be minor left coprime (mlc) in case the $r \times r$ minors of the compound matrix [$\left.\begin{array}{c}T \\ U\end{array}\right]$ have no non-trivial common factors in $R\left[x_{1}, x_{2}\right]$. Similarly, the matrices T, V in (2.57) are said to be minor right coprime (mrc) in case the $r \times r$ minors of the compound matrix $\left[\begin{array}{c}T^{T} \\ -V^{T}\end{array}\right]$ have no non-trivial common factors in $R\left[x_{1}, x_{2}\right]$.

Lemma 2.2 [23]
The following statements are equivalent
(i) T, U are mlc
(ii) Any polynomial factorization $\left[\begin{array}{cc}T & U\end{array}\right]=A\left[\begin{array}{ll}T^{*} & U^{*}\end{array}\right]$ with A being a square matrix, implies that A is unimodular over $R\left[x_{1}, x_{2}\right]$.

Definition 2.21 [23]
The matrices T, U in (3.1) are said to be zero left coprime (zlc) in case the compound matrix $\left[\begin{array}{ll}T & U\end{array}\right]$ has rank r for r for all values of the indeterminate pair $\left(x_{1}, x_{2}\right)$ over \mathbb{C}^{2}. Similarly the matrices T, V in (3.1) are said to be zero right coprime (zrc) in case the compound matrix $\left[\begin{array}{c}T^{T} \\ -V^{T}\end{array}\right]$ has rank r for all values of the indeterminate pair $\left(x_{1}, x_{2}\right)$ over \mathbb{C}^{2}.

In 1-D system theory a polynomial matrix with rank degeneracies can be viewed as the product of two polynomial matrices, one with full rank and the other containing the rank degeneracies. Consider now a $n \times m$ 2-D polynomial matrix $A(x)$ with $n \leq m$. Then there are three different notions of relative primeness for this matrix. These are termed minor and zero coprimeness and are defined as follows:

Definition 2.22 [16]

Let $A(x)$ and $B(x)$ denote, respectively, an $m \times q$ and $m \times l$ polynomial matrix, $q+1 \geq m \geq 1$, and let

$$
C(x)=\left[\begin{array}{ll}
A(x) & B(x) \tag{2.62}
\end{array}\right]
$$

Then, the pair $A(x), B(x)$ is said to be

1. zero left coprime (zlc) if there exists no 2 -tuple $x=\left(x_{1}, x_{2}\right)$ which is a zero of all the $m \times m$ minors of $C(x)$,
2. minor left coprime (mlc) if these minors are relative prime, and
3. factor left coprime (flc) if in any polynomial decomposition $C(x)=$ $C_{1}(x) C_{2}(x)$ in which $C_{1}(x)$ is square, $C_{1}(x)$ is necessarily elementary.

Note: In dual fashion, $A(x), B(x)$ are zero right coprime (zrc), etc if the matrix transposed pair $A^{T}(x), B^{T}(x)$ is zero left coprime.

Transpose is a matrix where it has as columns the rows of matrix $A(x)$ and as rows the columns of $A(x)$, for example, we have the matrix

$$
A(x)=\left(\begin{array}{cccc}
a_{11}(x) & a_{12}(x) & \ldots & a_{1 m}(x) \\
a_{21}(x) & a_{22}(x) & \ldots & a_{2 m}(x) \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1}(x) & a_{n 2}(x) & \ldots & a_{n m}(x)
\end{array}\right)
$$

and its transpose is the matrix

$$
A^{T}(x)=\left(\begin{array}{cccc}
a_{11}(x) & a_{21}(x) & \ldots & a_{n 1}(x) \\
a_{12}(x) & a_{22}(x) & \ldots & a_{n 2}(x) \\
\vdots & \vdots & \ddots & \vdots \\
a_{1 m}(x) & a_{2 m}(x) & \ldots & a_{n m}(x)
\end{array}\right)
$$

Example 2.5

This example demonstrates the different types of coprimeness for polynomial matrices over the polynomial ring $R\left[x_{1}, x_{2}\right]$.
(i) The greatest common divisor of the second order minors of the compound matrix $\left[\begin{array}{ll}A_{1} & B_{1}\end{array}\right]$ formed from the polynomial matrices

$$
A_{1}\left[x_{1}, x_{2}\right]=\left[\begin{array}{cc}
x_{1} & 0 \\
0 & x_{2}
\end{array}\right], \quad B_{1}\left[x_{1}, x_{2}\right]=\left[\begin{array}{cc}
x_{2} & 0 \\
0 & x_{1}
\end{array}\right]
$$

is equal to 1 , we have six different second order minors and these are

$$
\left|\begin{array}{cc}
x_{1} & 0 \\
0 & x_{2}
\end{array}\right|,\left|\begin{array}{cc}
x_{1} & x_{2} \\
0 & 0
\end{array}\right|,\left|\begin{array}{cc}
x_{1} & 0 \\
0 & x_{1}
\end{array}\right|,\left|\begin{array}{cc}
0 & x_{2} \\
x_{2} & 0
\end{array}\right|,\left|\begin{array}{cc}
0 & 0 \\
x_{2} & x_{1}
\end{array}\right|,\left|\begin{array}{cc}
x_{2} & 0 \\
0 & x_{1}
\end{array}\right|
$$

However, for the values $x_{1}=x_{2}=x_{3}=0$ the compound matrix loses rank, and therefore A_{1} and B_{1} are examples of minor left coprime matrices.
(ii) Finally the compound $\left[\begin{array}{ll}A_{2} & B_{2}\end{array}\right]$ formed from the polynomial matrices

$$
A_{2}\left[x_{1}, x_{2}\right]=\left[\begin{array}{cc}
1+x_{1} x_{2}^{2} & x_{1} \\
x_{2}^{2} & 1
\end{array}\right], \quad B_{2}\left[x_{1}, x_{2}\right]=\left[\begin{array}{cc}
x_{1}^{2} & 0 \\
1+x_{2} & x_{1}
\end{array}\right]
$$

has the second order minor

$$
\left|\begin{array}{cc}
1+x_{1} x_{2}^{2} & x_{1} \\
x_{2}^{2} & 1
\end{array}\right|=1
$$

which is equal to 1 , and therefore A_{2} and B_{2} are examples of zero left coprime matrices.

Note : Let $A \equiv A\left[x_{1}, x_{2}\right]$ denote an $m \times m$ polynomial matrix in the 2 variables x_{i}, $i=1,2$, and let $d(x)=\operatorname{det} A(x) \neq 0$. Suppose that $d(x)=d_{1}(x) d_{2}(x)$ where $d_{1}(x)$ and $d_{2}(x)$ are both polynomials. Then, for $n \geq 3$ it is not always possible to find two polynomial $m \times m$ matrices $A_{1}(x)$ and $A_{2}(x)$ such that $\operatorname{det} A_{i}(x)=d_{i}(x)$, $i=1,2$ and

$$
\begin{equation*}
A(x)=A_{1}(x) A_{2}(x) \tag{2.63}
\end{equation*}
$$

Theorem 2.9 [16]

For $n=1$ the three definitions are equivalent, i.e. $z l c \equiv m l c \equiv f l c$. For $n=2$, $z l c \not \equiv m l c \equiv f l c$ and for $n=3, z l c \not \equiv m l c \not \equiv f l c$. Always $z l c \rightarrow m l c \rightarrow f l c$.

Proof. That the three definitions are equivalent for $n=1$ is well known [Rosenbrock,1970] and is directly attributable to the fact that every ideal of polynomials in one variable is principal [Vander Waerden, 1950]. Since the polynomials $A(x)=x_{1}$ and $B(x)=x_{2}$ possess to common zero $x=(0,0)$ but are ely
prime, the zlc and mlc concepts differ for $n \geq 2$. Nevertheless, it is proved in Theorem 3.3 that for $n=2$, a pair $A(x), B(x)$ is mlc if and only if it is flc.

The proof of $n=3$ is in Youla and Gnavi [16] .
Furthermore, it is obvious that for all $n \geq 1$, zlc $\rightarrow \mathrm{mlc} \longrightarrow$ flc. \square

Theorem 2.10 [16]

1. The $m \times q$ and $m \times l$ polynomial matrices $A(x)$ and $B(x), q+l \geq m+l$ are zlc if and only if there exist two polynomial matrices $X(x)$ and $Y(x)$ such that

$$
\begin{equation*}
A(x) X(x)+B(x) Y(x)=I_{m} \tag{2.64}
\end{equation*}
$$

2. They are mlc if and only if for every $i=1, \ldots, n$, there exist polynomial matrices $X_{i}(x)$ and $Y_{i}(x)$ such that

$$
\begin{equation*}
A(x) X_{i}(x)+B(x) Y_{i}(x)=\psi_{i}(x) I_{m} \tag{2.65}
\end{equation*}
$$

where $\psi_{i}(x)$ is a nontrivial scalar polynomial independent of the variable x_{i}. Moreover, if $A(x)$ and $B(x)$ are real, $X(x), Y(x)$ and $X_{i}(x), Y_{i}(x), \psi_{i}(x)$ $i=1, \ldots, n$, can always be constructed.

Before the Proof of the Theorem 3.2, we need the Cauchy-Binet theorem[13]:

Suppose that a square matrix $C=\left(c_{i j}\right)$ is the product of two rectangular matrices $A=\left(a_{i k}\right)$ and $B=\left(b_{k j}\right)$ of dimension $n \times m$ and $m \times n$, respectively:

$$
\left(\begin{array}{ccc}
c_{11} & \ldots & c_{1 n} \tag{2.66}\\
c_{21} & \ldots & c_{2 n} \\
\vdots & \ddots & \vdots \\
c_{n 1} & \ldots & c_{n n}
\end{array}\right)=\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 m} \\
a_{21} & \ldots & a_{2 m} \\
\vdots & \ddots & \vdots \\
a_{n 1} & \ldots & a_{n m}
\end{array}\right)\left(\begin{array}{ccc}
b_{11} & \ldots & b_{1 n} \\
b_{21} & \ldots & b_{2 n} \\
\vdots & \ddots & \vdots \\
b_{m 1} & \ldots & b_{m n}
\end{array}\right)
$$

i.e.,

$$
\begin{equation*}
c_{i j}=\sum_{k=1}^{m} a_{i k} b_{k j} \quad(i, j=1, \ldots, n) \tag{2.67}
\end{equation*}
$$

We shall establish the important Binet-Cauchy formula, which expresses the determinant $|C|$ in terms of the minors of A and B :

$$
\left(\begin{array}{ccc}
c_{11} & \ldots & c_{1 n} \tag{2.68}\\
c_{21} & \ldots & c_{2 n} \\
\vdots & \ddots & \vdots \\
c_{n 1} & \ldots & c_{n n}
\end{array}\right)=\sum_{1 \leq k_{1}<k_{2}<\cdots<k_{n} \leq m}\left(\begin{array}{ccc}
a_{1 k_{1}} & \ldots & a_{1 k_{n}} \\
a_{2 k_{1}} & \ldots & a_{2 k_{n}} \\
\vdots & \ddots & \vdots \\
a_{n k_{1}} & \ldots & a_{n k_{n}}
\end{array}\right)\left(\begin{array}{ccc}
b_{k_{1} 1} & \ldots & b_{k_{1} n} \\
b_{k_{2} 1} & \ldots & b_{k_{2} n} \\
\vdots & \ddots & \vdots \\
b_{k_{n} 1} & \ldots & b_{k_{n} n}
\end{array}\right)
$$

According to this formula the determinant of C is the sum of the products of all possible minors of the maximal ($n-t h$) order of A into the corresponding minors of the same order of B.

The Binet-Cauchy formula enables us, in the general case also, to express the minors of the product of two rectangular matrices in terms of the minors of the factors. Let

$$
\begin{gathered}
A=\left(a_{i k}\right), B=\left(b_{k j}\right), C=\left(c_{i j}\right) \\
(i=1, \ldots, n, k=1, \ldots, m, j=1, \ldots, q)
\end{gathered}
$$

and $C=A B$.
We consider an arbitrary minor of C :

$$
C\left(\begin{array}{llll}
i_{1} & i_{2} & \ldots & i_{p} \\
j_{1} & j_{2} & \ldots & j_{p}
\end{array}\right) \quad\left(1 \leq i_{1}<i_{2}<\cdots<i_{p} \leq n, ~\left(\begin{array}{l}
1
\end{array}\right)\right.
$$

The matrix formed from the elements of this minor is the product of two rectangular matrices

$$
\left(\begin{array}{ccc}
a_{i_{1} 1} & \ldots & a_{i_{1} m} \\
a_{i_{2} 1} & \ldots & a_{i_{2} m} \\
\vdots & \ddots & \vdots \\
a_{i_{p} 1} & \ldots & a_{i_{p} m}
\end{array}\right), \quad\left(\begin{array}{ccc}
b_{1 j_{1}} & \ldots & b_{1 p} \\
b_{2 j_{1}} & \ldots & b_{2 j_{p}} \\
\vdots & \ddots & \vdots \\
b_{m j_{1}} & \ldots & b_{m j_{p}}
\end{array}\right)
$$

Therefore, by applying the Binet-Cauchy formula, we obtain:

$$
C\left(\begin{array}{cccc}
i_{1} & i_{2} & \ldots & i_{p} \tag{2.69}\\
j_{1} & j_{2} & \ldots & j_{p}
\end{array}\right)=\sum_{1 \leq k_{1}<k_{2}<\ldots<k_{n} \leq m} A\left(\begin{array}{cccc}
i_{1} & i_{2} & \ldots & i_{p} \\
k_{1} & k_{2} & \ldots & k_{p}
\end{array}\right) B\left(\begin{array}{llll}
k_{1} & k_{2} & \ldots & k_{p} \\
j_{1} & j_{2} & \ldots & j_{p}
\end{array}\right)
$$

The rank of the product of two rectangular matrices does not exceed the rank of either factor.

Note: If $C=A B$ and $\rho(A), \rho(B), \rho(C)$ are the ranks of A, B, C then

$$
\rho(C) \leq \min (\rho(A), \rho(B))
$$

Proof. (Theorem 2.10)

1. Clearly, (2.64) guarantees that $\operatorname{rank} C=\operatorname{rank}\left[\begin{array}{ll}A & B=m\end{array}\right]$ for all x and this implies that no $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is a common zero of all the $m \times m$ minors of $C(x)$. Thus (2.64) is sufficient for zlc. To prove necessity we employ a novel technique which succeeds in isolating each individual $m \times m$ minor of $C(x)$.
Let the pair $A(x), B(x)$ be zlc and let $\Delta_{i_{1}, i_{2}, \ldots, i_{m}}(x)$ denote the $m \times m$ minor of $C(x)$ formed with the given m rows and the m columns numbered $i_{1}, i_{2}, \ldots, i_{m}$. From the Definition of zlc, these C_{m}^{q+l} polynomials are devoid of any common zeros and invoking a classical result due to Hilbert [Vander Waerden, 1950], there exist polynomials $a_{i_{1}, i_{2}, \ldots, i_{m}}(x)$ such that

$$
\begin{equation*}
1=\sum_{(i)} a_{i_{1}, i_{2}, \ldots, i_{m}}(x) \Delta_{i_{1}, i_{2}, \ldots, i_{m}}(x) \tag{2.70}
\end{equation*}
$$

In addition, the α 's can all be chosen real if all the Δ 's are real. Pick K to be any $(q+l) \times m$ real constant matrix whose $m \times m$ minors $K\left(\begin{array}{cccc}i_{1} & i_{2} & \ldots & i_{m} \\ 1 & 2 & \ldots & m\end{array}\right)$ are all nonzero, introduce $q+l$ extra independent variables, $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{q+l}$ and let

$$
\begin{equation*}
\Lambda(x)=\operatorname{diag}\left[\lambda_{1}, \lambda_{2}, \ldots, \lambda_{q+l}\right] \tag{2.71}
\end{equation*}
$$

The polynomial matrix

$$
\begin{equation*}
D(x, \lambda)=C(x) \Lambda(x) K \tag{2.72}
\end{equation*}
$$

is $m \times m$ and from Cauchy-Binet theorem,

$$
\begin{align*}
& \Delta(x, \lambda) \equiv \operatorname{det} \Delta(x, \lambda)= \\
& \sum_{(i)} \lambda_{i_{1}} \lambda_{i_{2}} \ldots \lambda_{i_{\mu}} \Delta_{i_{1}, i_{2}, \ldots, i_{m}}(x) K\left(\begin{array}{cccc}
i_{1} & i_{2} & \ldots & i_{m} \\
1 & 2 & \ldots & m
\end{array}\right) \tag{2.73}
\end{align*}
$$

Thus for every one of the - tuples $(i)=i_{1}, i_{2}, \ldots, i_{m}$,

$$
\Delta_{i_{1}, i_{2}, \ldots, i_{m}}(x) K\left(\begin{array}{cccc}
i_{1} & i_{2} & \ldots & i_{m} \tag{2.74}\\
1 & 2 & \ldots & m
\end{array}\right)=\left.\frac{\partial^{m} \Delta(x, \lambda)}{\partial \lambda_{i_{1}} \partial \lambda_{i_{2}}, \ldots \partial \lambda_{i_{m}}}\right|_{(\lambda)=0}
$$

Let $D_{a}(x, \lambda)$ denote the $m \times m$ polynomial matrix adjugate to $D(x, \lambda)$. Since

$$
\begin{equation*}
\Delta(x, \lambda) I_{m}=D(x, \lambda) D_{a}(x, \lambda) \tag{2.75}
\end{equation*}
$$

multiplication of both sides of (2.73) on the right with $D_{a}(x, \lambda)$ yields

$$
\begin{equation*}
\Delta(x, \lambda) I_{m}=C(x) \Lambda(\lambda) K D_{a}(x, \lambda) \tag{2.76}
\end{equation*}
$$

IIn view of , (2.74), (2.76) permits the identifications

$$
\begin{equation*}
\Delta_{i_{1}, i_{2}, \ldots, i_{m}}(x) I_{m}=C(x) Z_{i_{1}, i_{2}, \ldots, i_{m}}(x) \tag{2.77}
\end{equation*}
$$

where for all (i),

$$
Z_{i_{1}, i_{2}, \ldots, i_{m}}(x)=\left.\frac{1}{K\left(\begin{array}{ccc}
i_{1} & i_{2} & \ldots \tag{2.78}\\
1 & 2 & \ldots \\
i_{m}
\end{array}\right)} \frac{\partial^{m}\left(\Lambda(\lambda) K D_{a}(x, \lambda)\right)}{\partial \lambda_{i_{1}} \partial \lambda_{i_{2}} \ldots \partial \lambda_{i_{m}}}\right|_{(\lambda)=0}
$$

is $(q+l) \times m$ and polynomial. Finally, by combining (2.66) and (2.77) we reach the desired result (2.64),

$$
\begin{equation*}
C(x) Z(x)=A(x) X(x)+B(x) Y(x)=I_{m} \tag{2.80}
\end{equation*}
$$

where

$$
Z(x)=\sum_{(i)} a_{i_{1}, i_{2}, \ldots, i_{m}}(x) Z_{i_{1}, i_{2}, \ldots, i_{m}}(x) \equiv\left[\begin{array}{l}
X(x) \tag{2.81}\\
Y(x)
\end{array}\right]
$$

An examination of the above procedure reveals that $Z(x)$ is always real if $C(x)$ is real.
2. Suppose that the pair $A(x), B(x)$ satisfies (2.65) for every $i=1, \ldots, n$. Then, by Cauchy-Binet, the gcd of the $m \times m$ minors of $C=\left[\begin{array}{ll}A & B\end{array}\right]$ must divide every $\psi_{i}(x)$. Since $\psi_{i}(x)$ is nontrivial and independent of $x_{i}, i=1, \ldots, n$, this gcd must be a nonzero constant and the $C_{m}^{q+1} \Delta$'s are therefore relative prime. Hence, $A(x)$ and $B(x)$ are mlc. The necessity of (2.65) is also easily established with the aid of (2.77).

By definition, $A(x)$ and $B(x)$ are mlc if the Δ 's form a relatively prime set of polynomials. But then, according to another classical result [Vander Waerden, 1950], for every $i=1, \ldots, n$ there exist polynomial $a_{i_{1}, i_{2}, \ldots, i_{m}}(x ; i)$ such that

$$
\begin{equation*}
\sum_{(i)} a_{i_{1}, i_{2}, \ldots, i_{m}}(x ; i) \Delta_{i_{1}, i_{2}, \ldots, i_{m}}(x)=\psi_{i}(x) \tag{2.82}
\end{equation*}
$$

where $\psi_{i}(x)$ is nontriavial and independent of x_{i}.

As before, the a 's can be chosen real if all Δ 's are real. Thus combining (2.77) and (2.82),

$$
\begin{equation*}
C(x) Z_{i}(x)=A(x) X_{i}(x)+B(x) Y_{i}(x)=\psi_{i}(x) I_{m} \tag{2.83}
\end{equation*}
$$

where

$$
Z_{i}(x)=\sum_{(i)} a_{i_{1}, i_{2}, \ldots, i_{m}}(x ; i) Z_{i_{1}, i_{2}, \ldots, i_{m}}(x) \equiv\left[\begin{array}{l}
X_{i}(x) \tag{2.84}\\
Y_{i}(x)
\end{array}\right]
$$

As we said before, for case $\mathrm{n}=2$ notions minor coprimeness and factor coprimeness are identically. Let's see why this happens with the following Theorem:

Theorem 2.11 [16]

For $n=2$, a polynomial pair $A(x), B(x)$ is minor left coprime if and only if it is factor left coprime.

Proof. Let the pair $A(x), B(x)$ be mlc but not flc. Then, $C(x)=\left[\begin{array}{ll}A(x) & B(x)\end{array}\right]$ admits a polynomial decomposition $C(x)=C_{1}(x) C_{2}(x)$ where in $C_{1}(x)$ is square and non elementary. Since mlc implies that normal rank $C(x)=m, \operatorname{det} C_{1}(x)$ is a non constant polynomial which divides all the $m \times m$ minors of $C(x)$, a contradiction.

A set of polynomials $a_{i}\left(x_{1}\right), 1 \leq i \leq n$, in one indeterminate are said to be factor coprime provided there is no value $\overline{x_{1}} \in \mathbb{C}$ such that they are not identically zero. If such a value exists then $x_{1}-\overline{x_{1}}$ is a factor of all the polynomials in the set. In the case of $n \geq 2$, this no longer holds and hence it is a necessary to distinguish between zero coprimeness and factor coprimeness. The following fundamental results, termed Hilbert's Nullstellensatz.

Example 2.6

Consider the 2-D polynomial matrices given in part (i) of Example 2.5

$$
A_{1}\left[x_{1}, x_{2}\right]=\left[\begin{array}{cc}
x_{1} & 0 \\
0 & x_{2}
\end{array}\right], \quad B_{1}\left[x_{1}, x_{2}\right]=\left[\begin{array}{cc}
x_{2} & 0 \\
0 & x_{1}
\end{array}\right]
$$

It can be easily verified that the following identities hold

$$
\left[\begin{array}{cc}
x_{1} & 0 \\
0 & x_{2}
\end{array}\right]\left[\begin{array}{cc}
0 & 0 \\
0 & x_{2}
\end{array}\right]+\left[\begin{array}{cc}
x_{2} & 0 \\
0 & x_{1}
\end{array}\right]\left[\begin{array}{cc}
x_{2} & 0 \\
0 & 0
\end{array}\right]=x_{2}{ }^{2}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

$$
\begin{gathered}
{\left[\begin{array}{cc}
x_{1} & 0 \\
0 & x_{3}
\end{array}\right]\left[\begin{array}{cc}
x_{1} & 0 \\
0 & 0
\end{array}\right]+\left[\begin{array}{cc}
x_{2} & 0 \\
0 & x_{1}
\end{array}\right]\left[\begin{array}{cc}
0 & 0 \\
0 & x_{1}
\end{array}\right]=x_{1}^{2}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]} \\
{\left[\begin{array}{cc}
x_{1} & 0 \\
0 & x_{2}
\end{array}\right]\left[\begin{array}{cc}
x_{2}\left(x_{2}+1\right) & 0 \\
0 & 0
\end{array}\right]+\left[\begin{array}{cc}
x_{2} & 0 \\
0 & x_{1}
\end{array}\right]\left[\begin{array}{cc}
x_{1}\left(1+x_{2}\right) & 0 \\
0 & x_{1}+x_{2}
\end{array}\right]} \\
=x_{1} x_{2}\left(1+x_{2}\right)\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right]
\end{gathered}
$$

which demonstrate the Bezout identities for minor left coprimeness. Now consider the two polynomial matrices given in part (ii) of example 2.5

$$
A_{2}\left[x_{1}, x_{2}\right]=\left[\begin{array}{cc}
1+x_{1} x_{2}^{2} & x_{1} \\
x_{2}^{2} & 1
\end{array}\right], \quad B_{2}\left[x_{1}, x_{2}\right]=\left[\begin{array}{cc}
x_{1}^{2} & 0 \\
1+x_{2} & x_{1}
\end{array}\right]
$$

It can be easily verified that the following identities hold

$$
\left[\begin{array}{cc}
1+x_{1} x_{2}^{2} & x_{1} \\
x_{2}^{2} & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
-x_{2}^{2} & 0
\end{array}\right]+\left[\begin{array}{cc}
x_{1}^{2} & 0 \\
1+x_{2} & x_{1}
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
0 & \frac{1}{x_{1}}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

which demonstrates the Bezout identity for zero left coprimeness.

2.3.2 Invariant Polynomials and Zeros

In 2-D matrix theory we distinguish between two types of invariants; those associated with factors of the matrix and those associated with isolated points of \mathbb{C}^{2}. The factors have counterparts in 1-D theory and are described by the Smith form. In 1-D the Smith form can be obtained by pre- and post-multiplication by unimodular matrices, but in 2-D this is not possible and we adopt the alternative (and in 1-D equivalent) definition.

Definition 2.23 [24]
An $m \times n$ polynomial matrix $P\left(x_{1}, x_{2}\right)$ has Smith form:

$$
\begin{gather*}
S\left(x_{1}, x_{2}\right)=\left(Q\left(x_{1}, x_{2}\right) \quad 0_{m, n-m}\right), \quad n>m \\
S\left(x_{1}, x_{2}\right)=Q\left(x_{1}, x_{2}\right), \quad n=m \tag{2.85}\\
S\left(x_{1}, x_{2}\right)=\binom{Q\left(x_{1}, x_{2}\right)}{0_{m-n, n}}, \quad n<m
\end{gather*}
$$

where $Q\left(x_{1}, x_{2}\right)$ is a diagonal matrix having the invariant polynomials $\varepsilon_{i}\left(x_{1}, x_{2}\right)$ as its non-zero elements. If the rank of P is r then there are r non-zero elements occupying the leading r positions and the remaining invariant polynomials are zero. Each $\varepsilon_{i}\left(x_{1}, x_{2}\right)$ divides $\varepsilon_{i+1}\left(x_{1}, x_{2}\right), i=1, \ldots, r$. The $\varepsilon_{i}\left(x_{1}, x_{2}\right)$ are given by

$$
\begin{equation*}
\varepsilon_{i}\left(x_{1}, x_{2}\right)=\frac{D_{i}\left(x_{1}, x_{2}\right)}{D_{i-1}\left(x_{1}, x_{2}\right)}, i=1, \ldots, r \tag{2.86}
\end{equation*}
$$

where $D_{0}\left(x_{1}, x_{2}\right)=1$ and $D_{i}\left(x_{1}, x_{2}\right)$ is the $g c d$ of minors of order i in $P\left(x_{1}, x_{2}\right)$.

Invariant polynomials are unique modulo a multiplicative constant, each of which, in 2-D, correspond to a matrix factor of $P\left(x_{1}, x_{2}\right)$. Thus invariant polynomials can be factored out of the matrix. Invariant polynomials can be decomposed into irreducible factors, which we term invariant factors, each having an associated multiplicity and a number of degrees.

Like we saw, for many reasons it is frequently necessary in systems analysis to transform a polynomial matrix to a simpler but equivalent form. One basic equivalence transformation in the 2-D context is zero coprime equivalent. But, before the Definition of zero coprime equivalent, firstly, we have to say something else[19]:

There are various zero structures one can define for $P(x)$, but all definitions are based on the property that zero is associated with a renk reduction of the matrix. The $i-t h$ determinantal divisor is unique module a multiplicative constant $c \in$ $\mathbb{C} /\{0\}$ and so this definition is the direct extension of the 1-D case where it
characterizes exactly the situation in which a 1-D matrix loses rank. The simple example $P(x)=\left(x_{1}, x_{2}\right)$ reveals the inadequacy of this definition for general n-D polynomial matrices. This matrix has $d_{1}(x)=1$ and so has no determinantal zeros, nevertheless $P(x)$ loses rank for $x_{1}=x_{2}=0$. We required a more encompassing definition.
For any $p \times q$ n-D polynomial matrix $P(x)$, let $m_{(i, j)}$ denote an individual $i \times i$ minor of $P(x)$ where $j=1, \ldots, k_{i}=\left(\frac{p!}{i!(p-i)!}\right)\left(\frac{q!}{i!(q-i)!}\right)$. Denote the ideal generated by the $i \times i$ minors of $P(x)$ by $I_{i}^{[P]}$ and write $I_{i}^{[P]}=d_{i} J_{i}^{[P]}$, where $J_{i}^{[P]}$ is the ideal generated by the set of polynomials which result from the $i \times i$ minors of $P(x)$ when the $i-t h$ determinantal divisor $d_{i}(x)$ is removed. Clearly each ideal $J_{i}^{[P]}$ is generated by a set of factor coprime polynomials. This set, however, may not be additionally zero coprime which is the distinctive feature of $\mathrm{n}-\mathrm{D}(n>1)$, and the situation which the previous simple example $P(x)=\left(x_{1}, x_{2}\right)$ illustrates. These considerations lead us to the following definitions which find their origin in Zerz (1996).

Definition 2.24 [19]
The $i-$ th order invariant zeros, $i=1, \ldots, r$, of a polynomial matrix $P(x)$, are the elements of $V\left(I_{i}^{[P]}\right)$, the variety defined by the ideal $I_{i}^{[P]}$ and they are defined to be

$$
Z_{i}\{P(x)\}=\eta_{i}\{P(x)\}-\eta_{i-1}\{P(x)\}
$$

where $\eta_{i}\{P(x)\}$ is the set of $i-$ th order determinantal zeros of $P(x)$ and $\eta_{0}\{P(x)\}$ is the empty set.

2.4 Equivalences in 2-D polynomial matrices

In this chapter, we will see four different equivalences in 2-D polynomial matrices and some more results which arise.

Definition 2.25 [24]
$P_{1}\left(x_{1}, x_{2}\right), P_{2}\left(x_{1}, x_{2}\right) \in \mathcal{P}\left(x_{1}, x_{2}\right)^{m \times l}$ are EO-EQUIVALENT (eoe) if one can be obtained from the other by a sequence of elementary row and column operations over $\mathcal{P}\left(x_{1}, x_{2}\right)$.

Definition 2.26 [24]
$P_{1}\left(x_{1}, x_{2}\right), P_{2}\left(x_{1}, x_{2}\right)$ are UNIMODULAR EQUIVALENT (ue) if \exists unimodular matrices $L\left(x_{1}, x_{2}\right), R\left(x_{1}, x_{2}\right)$ such that

$$
\begin{equation*}
P_{2}\left(x_{1}, x_{2}\right)=L\left(x_{1}, x_{2}\right) P_{1}\left(x_{1}, x_{2}\right) R\left(x_{1}, x_{2}\right) \tag{2.87}
\end{equation*}
$$

Elementary operations are the basis for computational developments. If $E_{L}\left(x_{1}, x_{2}\right)$ (resp. $E_{R}\left(x_{1}, x_{2}\right)$) is the result of performing the elementary row (resp. column) operations on I_{m} (resp. I_{l}) eoe can be written as

$$
\begin{equation*}
P_{2}\left(x_{1}, x_{2}\right)=E_{L}\left(x_{1}, x_{2}\right) P_{1}\left(x_{1}, x_{2}\right) E_{R}\left(x_{1}, x_{2}\right) \tag{2.88}
\end{equation*}
$$

$E_{L}\left(x_{1}, x_{2}\right), E_{R}\left(x_{1}, x_{2}\right)$ of (2.88) are called ELEMENTARY. It is clear that elementary matrices are unimodular thus eoe implies ue.

Note: However unimodular matrices are not necessarily elementary, and so the converse is false.

Definition 2.27 [19]
Denote the class of $(s+p) \times(s+q)$ 2-D polynomial matrices by $\mathcal{P}(p, q)$, where $s>-\min (p, q), P_{1}\left(x_{1}, x_{2}\right), P_{2}\left(x_{1}, x_{2}\right) \in \mathcal{P}(p, q)$ are said to be ZERO COPRIME EQUIVALENT (zce) in case \exists polynomial matrices $M\left(x_{1}, x_{2}\right), N\left(x_{1}, x_{2}\right)$ of appropriate dimensions such that

$$
\begin{equation*}
M\left(x_{1}, x_{2}\right) P_{2}\left(x_{1}, x_{2}\right)=P_{1}\left(x_{1}, x_{2}\right) N\left(x_{1}, x_{2}\right) \tag{2.89}
\end{equation*}
$$

with M, P_{1} zlc and P_{2}, N zrc.

Theorem 2.12 [27]
The relation (2.89) is an equivalence relation.
Proof. Let $P_{1}\left(x_{1}, x_{2}\right)^{p \times q}$ and $P_{2}\left(x_{1}, x_{2}\right)^{r \times s}$ two polynomial matrices (with $p \times q=$ $r \times s)$ and let $M\left(x_{1}, x_{2}\right)$ and $N\left(x_{1}, x_{2}\right)$ polynomial matrices as to:

$$
\begin{equation*}
M P_{2}=P_{1} N \tag{2.90}
\end{equation*}
$$

with M, P_{1} zlc and P_{2}, N zrc.
i. Reflexivity

Let $P_{1} \equiv P_{2}$ in (2.90). Then $p=r$ and $q=s$.
If $N=I_{q}$ and $M=I_{r}$ then $I_{r} P_{2}=P_{1} I_{q}$ and det $I=1$.
I_{r}, P_{1} zero left coprime and P_{2}, I_{q} zero right coprime.
ii. Transitivity

We suppose that

$$
\begin{align*}
& M P_{2}=P_{1} N \tag{2.91}\\
& \bar{M} P_{1}=P_{3} N \tag{2.92}
\end{align*}
$$

The $2.91 \Rightarrow M\left(M P_{2}\right)=M\left(P_{1} N\right)=P_{3} \bar{N} N$.

So we need to prove that \bar{M}, M, P_{3} are zero left coprime. Similarly we will prove that \bar{N}, N, P_{1} are zero right coprime.
iii. Symmetry

$$
\begin{align*}
\left(\begin{array}{ll}
\overline{Y_{1}} & \overline{X_{1}}
\end{array}\right)\binom{P_{2}}{-N} & =I_{q} \tag{2.93}\\
\left(\begin{array}{ll}
M & P_{1}
\end{array}\right)\binom{X_{2}}{Y_{2}} & =I_{r} \tag{2.94}
\end{align*}
$$

From (2.90)

$$
\left(\begin{array}{ll}
M & P_{1} \tag{2.95}
\end{array}\right)\binom{P_{2}}{-N}=0
$$

Then

$$
\left(\begin{array}{cc}
M & P_{1} \tag{2.96}\\
\bar{Y}_{1} & X_{1}
\end{array}\right)\left(\begin{array}{cc}
X_{2} & P_{2} \\
Y_{2} & -N
\end{array}\right)=\left(\begin{array}{cc}
I_{r} & 0 \\
J & I_{l}
\end{array}\right)
$$

where $\quad J=\overline{Y_{1}} X_{2}+\overline{X_{1}} Y_{2}$
now if we multiply from the left the (2.96) with
$\left(\begin{array}{cc}I_{r} & 0 \\ -J & I_{l}\end{array}\right)$ we have:

$$
\underbrace{\left(\begin{array}{cc}
M & P_{1} \tag{2.97}\\
Y_{1} & X_{1}
\end{array}\right)}_{A} \underbrace{\left(\begin{array}{ll}
X_{2} & P_{2} \\
Y_{2} & -N
\end{array}\right)}_{B}=\left(\begin{array}{cc}
I_{r} & 0 \\
0 & I_{l}
\end{array}\right)
$$

where $X_{1}=\overline{X_{1}}-J P_{1}$ and $Y_{1}=\overline{Y_{1}}-J M$

Because $A_{(r+q) \times(p+s)}$ and $B_{(p+s) \times(r+q)}$ square matrices of the same size, which between them are inverse polynomials, they have to be invertible and to give

$$
\underbrace{\left(\begin{array}{cc}
X_{2} & P_{2} \tag{2.98}\\
Y_{2} & -N
\end{array}\right)}_{B} \underbrace{\left(\begin{array}{ll}
M & P_{1} \\
Y_{1} & X_{1}
\end{array}\right)}_{A}=\left(\begin{array}{cc}
I_{m} & 0 \\
0 & I_{S}
\end{array}\right)
$$

and the equations

$$
\begin{align*}
& X_{2} M+P_{2} Y_{1}=I_{m} \tag{2.99}\\
& X_{2} P_{1}+P_{2} X_{1}=0 \\
& Y_{2} P_{1}+-N Y_{1}=0
\end{align*}
$$

So from (2.98) X_{2}, P_{2} are zero left coprime and from (2.99) $-X_{1}, P_{1}$ are zero right coprime.

So it is symmetric.

Theorem 2.13 [24]
The two polynomial matrices $\mathrm{P}_{1}, \mathrm{P}_{2}$, of Definition 2.27 are ue if-f they are zce.
Proof. (zce \Rightarrow ue) The Bezout identities for left and right zero coprimeness are

$$
\begin{equation*}
S_{1} \bar{Z}+P_{1} \bar{W}=I_{q_{1}}, \quad X S_{2}+Y P_{2}=I_{q_{2}} \tag{2.100}
\end{equation*}
$$

Hence we can write

$$
\left(\begin{array}{cc}
-X & Y \tag{2.101}\\
P_{1} & S_{1}
\end{array}\right)\left(\begin{array}{cc}
-S_{2} & \bar{W} \\
P_{2} & \bar{Z}
\end{array}\right)=\left(\begin{array}{ll}
I & J \\
0 & I
\end{array}\right)
$$

where $J=-X \bar{W}+Y \bar{Z}$. Postmultiplying (2.91) by the inverse of the matrix on the right hand side gives

$$
\left(\begin{array}{cc}
-X & Y \tag{2.102}\\
P_{1} & S_{1}
\end{array}\right)\left(\begin{array}{cc}
-S_{2} & \bar{W} \\
P_{2} & \bar{Z}
\end{array}\right)=\left(\begin{array}{ll}
I & 0 \\
0 & I
\end{array}\right)
$$

Hence the matrices on the left hand side are unimodular. Thus

$$
\left(\begin{array}{cc}
-X & Y \tag{2.103}\\
P_{1} & S_{1}
\end{array}\right)\left(\begin{array}{cc}
I_{q_{1}} & 0 \\
0 & P_{2}
\end{array}\right)=\left(\begin{array}{cc}
I_{q_{2}} & 0 \\
0 & I
\end{array}\right)\left(\begin{array}{cc}
-X & Y P_{2} \\
I & S_{2}
\end{array}\right)
$$

in which the first matrix on the left hand side is unimodular. Also

$$
\left(\begin{array}{cc}
I & X \\
0 & I
\end{array}\right)\left(\begin{array}{cc}
-X & Y P_{2} \\
I & S_{2}
\end{array}\right)\left(\begin{array}{cc}
-S_{2} & \mathrm{I} \\
I & 0
\end{array}\right)=\left(\begin{array}{ll}
I & 0 \\
0 & I
\end{array}\right)
$$

and so the last matrix on the right hand side of (2.103) is unimodular. Therefore (2.103) states that P_{1} and P_{2} are eue.
(ue \Rightarrow zce) Assume that the following holds

$$
\underbrace{\left(\begin{array}{ll}
M_{11} & M_{12} \\
M_{21} & M_{22}
\end{array}\right)}_{M}\left(\begin{array}{cc}
I & 0 \\
0 & P_{1}
\end{array}\right)=\left(\begin{array}{cc}
I & 0 \\
0 & P_{2}
\end{array}\right) \underbrace{\left(\begin{array}{ll}
N_{11} & N_{12} \\
N_{21} & N_{22}
\end{array}\right)}_{N}
$$

where M and N are unimodular. Writing this as

$$
\left(\begin{array}{ll}
M_{11} & M_{12} P_{1} \\
M_{21} & M_{22} P_{1}
\end{array}\right)=\left(\begin{array}{cc}
N_{11} & N_{12} \\
P_{2} N_{21} & P_{2} N_{22}
\end{array}\right)
$$

Therefore $M_{22} P_{1}=P_{2} N_{22}$ and

$$
M=\left(\begin{array}{cc}
M_{11} & M_{12} \\
P_{2} N_{21} & M_{22}
\end{array}\right), \quad N=\left(\begin{array}{cc}
N_{11} & M_{12} P_{1} \\
N_{21} & N_{22}
\end{array}\right)
$$

Hence P_{2} and M_{22} are zlc otherwise M is not unimodular. Similarly P_{1} and N_{22} must zrc.

Theorem 2.14 [19]

Suppose that $\mathrm{P}_{1}(\mathrm{x}) \in \mathcal{P}(p, q)$ of rank r_{i} and with dimensions $p_{1}-q_{1}=p_{2}-q_{2}(=$ $p-q$) are Z.C.E. according to the relation (2.89). Then

$$
\begin{equation*}
I_{r_{1}-i}^{\left[p_{1}\right]}=I_{r_{2}-i}^{\left[p_{2}\right]}, i=0, \ldots, r-1 \tag{2.104}
\end{equation*}
$$

where $r=\min \left(r_{1}-r_{2}\right)$. For any $i \geq r, I_{r_{1}-i}^{\left[p_{1}\right]}=<1>$ in case $r_{1}-i \geq 0$ or $I_{r_{2}-i}^{\left[p_{2}\right]}=<$ $1>$ in case $r_{2}-i \geq 0$.

Proof.

Suppose that $h_{1}=\min \left(p_{1}, q_{1}\right), h_{2}=\min \left(p_{2}, q_{2}\right)$ and let $i=\{1,2\}$ and its complement i^{\prime} in $\{1,2\}$ be such that $h_{i} \leq h_{i}$.

Let

$$
P_{i}(z) \triangleq\left(\begin{array}{cc}
I_{h_{i}-h_{i}} & 0 \\
0 & P_{i}(z)
\end{array}\right)
$$

It is clear that the ideals generated by the various minors of $P_{i}(z), P_{i}(z)$ are related as

$$
\begin{align*}
& I_{h_{i}}^{\left[P_{i}\right]}=I_{h_{i}}^{\left[P_{i}\right]} \\
& \vdots \\
& I_{h_{i}-h_{i+1}}^{\left[P_{i}\right]}=I_{1}^{\left[P_{i}\right]} \\
& I_{h_{i}-h_{i}}^{\left[P_{i}\right]}=\langle 1\rangle \\
& \vdots \\
& I_{1}^{\left[P_{i}\right]}=\langle 1\rangle \tag{2.105}
\end{align*}
$$

Now $P_{i}(z), P_{i}(z)$ are Z.C.E. as either of the statements

$$
\left(\begin{array}{ll}
0 & I_{p_{i}}
\end{array}\right) P_{i}(z)=P_{i}(z)\left(\begin{array}{ll}
0 & I_{q_{i}}
\end{array}\right)
$$

$$
\binom{0}{I_{p_{i}}} P_{i}(z)=P_{i}(z)\binom{0}{I_{q_{i}}}
$$

confirms. Hence from the transitivity of Z.C.E. relation it follows that $P_{i}(z), P_{i}(z)$ are Z.C.E.

We establish the theorem for $P_{i}(z), P_{i}(z)$ which are of identical dimensions.
Let $h=\min \left(p^{\prime}, q^{\prime}\right)$ then from the coprimeness requirements of Z.C.E. \exists polynomial matrices $X(z), Y(z), W(z), Z(z)$ of appropriate dimensions such that

$$
\begin{align*}
& M X+P_{1}^{\prime} Y=I_{p}^{\prime} \\
& W P_{2}^{\prime}+Z N=I_{q} \tag{2.106}
\end{align*}
$$

From (2.89) and (2.104) it follows that

$$
\left(\begin{array}{cc}
W & -Z \tag{2.107}\\
M & P_{1}^{\prime}
\end{array}\right)\left(\begin{array}{cc}
P_{2}^{\prime} & X \\
-N & Y
\end{array}\right)=\left(\begin{array}{cc}
I_{q} & J \\
0 & I_{p^{\prime}}
\end{array}\right)
$$

where $J=W X-Z Y$.

For any matrix $Q_{\text {let }} Q_{j_{1}, \ldots, j_{k}}^{i_{1}, \ldots i_{k}}$ denote the $k \times k$ submatrix formed from rows i_{1}, \ldots, i_{k} and columns j_{1}, \ldots, j_{k}. Consider then the following equation formed from (2.107)

$$
\underbrace{\left(\begin{array}{cc}
E^{i_{1}, \ldots, i_{k}} & 0 \tag{2.108}\\
M & P_{1}^{\prime}
\end{array}\right)}_{A} \underbrace{\left(\begin{array}{cc}
P_{2}^{\prime} j_{1}, \ldots, j_{k} & X \\
-N_{j_{1}, \ldots, j_{k}}^{\prime} & Y
\end{array}\right)}_{B}=\left(\begin{array}{cc}
P_{2}^{i_{j_{1}, \ldots, j_{k}}^{i_{k}}} & X^{i_{1}, i_{k}} \\
0 & I_{p^{\prime}}
\end{array}\right)
$$

where $1 \leq k \leq h$ and $E^{i, \ldots, i_{k}}$ is the matrix whose $t, s^{t h}$ element is 1 if $s=i_{t}$ and zero otherwise.

Take determinants of both sides of (2.108), and use the Cauchy-Binet theorem to expand the left hand side. This gives

$$
\begin{equation*}
\sum_{m}\left|A_{m_{1}, \ldots, m_{p+k}}^{1, \ldots, p^{\prime}+k}\right|\left|B_{1, \ldots, p^{2}+k}^{m_{1}, \ldots, m_{p+k}}\right|=\left|P_{2 j_{1}, \ldots, j_{k}}^{P_{i}^{i n}, \ldots,}\right| \tag{2.109}
\end{equation*}
$$

Now the form of A indicates that any factor of A of the type occurring in the left hand side of (2.109) for which $\left\{i_{1}, \ldots \dot{j}_{k}\right\}$ is not a subset of $\left\{m_{1}, \ldots, m_{p+k}\right\}$ is zero. Thus all minors of A which occur in the left hand side of (2.109) contain the columns $\left\{i_{1}, \ldots, i_{k}\right\}$. Such a factor is then expressible via Laplace expansion in terms of products of
 minors ${ }^{P_{1}^{\prime}}$ of order k and greater.

Since any minor can be expanded in terms of lower order minors, it follows that
 follows that $I_{k}^{\left[P^{\prime}\right]} \subset I_{k}^{\left[P^{\prime}\right]}, k=1, \ldots, h$
whre $h=\min \left(p^{\prime}, q^{\prime}\right)$.
By the symmetry property of the Z.C.E. relation $\exists p \times q, q \times q$ polynomial matrices $M^{\prime}(z), N^{\prime}(z)$ such that
$M^{\prime} P_{1}^{\prime}=P_{2}^{\prime} N^{\prime}$,
where $M^{\prime}(z), P_{2}^{\prime}(z)$ are zero left coprime, and $P_{1}^{\prime}(z), N^{\prime}(z)$ are zero right coprime. Applying the same procedure as above gives
$I_{k}^{\left[P^{\prime}\right]} \subset I_{k}^{\left[P^{\prime}\right]}$
where $k=1, \ldots, h$. Hence

$$
I_{k}^{\left[P_{2}^{\prime}\right]}=I_{k}^{\left[P^{\prime}\right]} \quad \gamma_{1 \alpha} k=1, \ldots, h .
$$

Let $i=\{1,2\}$ and its complement i^{\prime} in $\{1,2\}$ be such that $h_{i} \leq h_{i}$. It follows from the above and the relation (2.105) that in terms of the original matrices $P_{1}(x), P_{2}(x)$ we have

$$
\begin{align*}
& I_{h_{i}}^{\left[P_{i}\right]}=I_{h_{i}}^{\left[P_{i}\right]} \\
& \vdots \\
& I_{h_{i}-h_{i+1}}^{\left[P_{j}\right]}=I_{1}^{\left[P_{i}\right]} \\
& I_{h_{i}-h_{i}}^{\left[P_{i}\right]}=\langle 1\rangle \\
& \vdots \\
& I_{1}^{\left[P_{i}\right]}=\langle 1\rangle \tag{2.110}
\end{align*}
$$

Now since $r_{i^{\prime}}=\operatorname{rank} P_{i^{\prime}}$ we have
$I_{h_{i}}^{\left[P_{i^{\prime}}\right]}=\cdots=I_{h_{i}-h_{i^{\prime}}+r_{i^{\prime}}+1}^{\left[P_{P^{\prime}}\right]}=\{0\} \neq I_{h_{i}-h_{i^{\prime}}+r_{i^{\prime}}}^{\left[P_{i^{\prime}}\right]}$.
Hence

$$
r_{i^{\prime}}=h_{i}-h_{i^{\prime}}+r_{i^{\prime}}
$$

and so the relation (2.110) reduce to

$$
\begin{aligned}
& I_{r_{i}}^{\left[P_{i}\right]}=I_{r_{i}}^{\left[P_{i}\right]} \\
& \vdots \\
& I_{r_{i}-r_{i+1}}^{\left[P_{i}\right]}=I_{1}^{\left[P_{i}\right]} \\
& I_{r_{i}-r_{i}}^{\left[P_{i}\right]}=\langle 1\rangle \\
& \vdots \\
& I_{1}^{\left[P_{i}\right]}=\langle 1\rangle
\end{aligned}
$$

which completes the proof.

Corollary 2.2 [24]

Suppose that two polynomial matrices $\mathrm{P}_{1}, \mathrm{P}_{2}$ are related by Z.C.E. then the invariant zeros are related by

$$
\begin{equation*}
Z_{q-n}\left\{P_{1}\right\}=Z_{p-n}\left\{P_{2}\right\} \tag{2.111}
\end{equation*}
$$

where $p=\min \left(p_{2}, q_{2}\right), \mathrm{q}=\min \left(p_{1}, q_{1}\right), 0 \leq n \leq \min (p, q)$.
Proof. [28]
Since $N(x), P_{2}(x)$ are zero right coprime and $M(x), P_{1}(x)$ are zero left coprime there exist polynomial matrices $X(x), Y(x), W(x)$ and $\mathrm{Z}(\mathrm{x})$ of appropriate dimensions such that

$$
\begin{equation*}
M X+P_{1} Y=I_{p_{1}} \tag{2.112}
\end{equation*}
$$

$$
W P_{2}+Z N=I_{q_{2}}
$$

From (2.89) and (2.105) it follows that

$$
\left(\begin{array}{ll}
W & -Z \\
M & P_{1}
\end{array}\right)\left(\begin{array}{cc}
P_{2} & X \\
-N & Y
\end{array}\right)=\left(\begin{array}{cc}
I_{q_{2}} & J \\
0 & I_{p_{1}}
\end{array}\right)
$$

where $J=W X-Z Y$. Now, replace $\left[\begin{array}{ll}W & -Z\end{array}\right]$ with $\left[\begin{array}{ll}E & 0\end{array}\right]$ which gives

$$
\left(\begin{array}{cc}
E & 0 \tag{2.1.13}\\
M & P_{1}
\end{array}\right)\left(\begin{array}{cc}
P_{2} & X \\
-N & Y
\end{array}\right)=\left(\begin{array}{cc}
P_{2} l_{1}, \ldots, l_{q_{2}} & X^{l_{1}, \ldots, l_{q_{2}}} \\
0 & I_{p_{1}}
\end{array}\right) .
$$

where, in the case $p_{2} \geq q_{2}$ (and hence $p_{1} \geq q_{1}$) the constant matrix $E_{q_{2} \times p_{2}}$ is the unit matrix $I_{q_{2}}$ with $p_{2}-q_{2}$ zero columns to form a $q_{2} \times p_{2}$ matrix $l_{1}, \ldots, l_{q_{2}}$ correspond to the rows of the matrices P_{2} and X selected by multiplication by E.

For any matrix R let $R_{j_{1}, \ldots, j_{h}}^{i_{1}, \ldots, i_{k}}$ denote the $k \times h$ submatrix formed from rows i_{1}, \ldots, i_{k} and columns j_{1}, \ldots, j_{h}. Consider the following $\left(p_{1}+k\right) \times\left(p_{1}+k\right)$ submatrix formed from (2.113)

$$
\left(\begin{array}{cc}
E^{i_{1}, \ldots, i_{k}} & 0_{k \times q_{1}} \tag{2.114}\\
M & P_{1}
\end{array}\right)\left(\begin{array}{cc}
P_{2_{j_{1}}, \ldots, j_{k}} & X \\
-N_{j_{1}, \ldots, j_{k}} & Y
\end{array}\right)=\left(\begin{array}{cc}
\left(P_{2} l_{1}, \ldots, l_{q_{2}}\right)_{j_{1}, \ldots, j_{k}}^{i_{1}, \ldots, i_{k}} & X^{l_{1}, \ldots, l_{q_{2}}}{ }_{j_{1}, \ldots, j_{k}}^{i_{1}, \ldots i_{k}} \\
0 & I_{p_{1}}
\end{array}\right) .
$$

Take determinants of both sides and using the Cauchy-Binet Theorem, (2.114) shows that

$$
\sum_{m}\left|A_{m_{1}, \ldots, m_{p_{1}+k}}^{1, \ldots, p_{1}+k}\right|\left|B_{1, \ldots, p_{1}+k}^{m_{1}, \ldots, m_{p_{1}+k}}\right|=\left|P_{2}^{l_{1}, \ldots, l_{q_{2}}}{ }_{j_{1}, \ldots, j_{k}}^{i_{1}, \ldots, i_{k}}\right|
$$

Noting that $l_{1}, \ldots, l_{q_{2}}$ are arbitrary, and by considering all combinations of the columns of $E^{i_{1}, \ldots, i_{k}}$ and the form of A, it can be seen that the only non-zero minors are those involving columns i_{1}, \ldots, i_{k} of the first block column. Such a factor can then be expressed via the Laplace expansion in terms of minors of M and P_{1}. The smallest minor of P_{1} occurring in the Laplace expansion is of order $q+k-p$, where $\mathrm{q}=$ $\min \left(p_{1}, q_{1}\right)$ and $p=\min \left(p_{2}, q_{2}\right)$. Therefore the minors of P_{2} of order k are linear combinations of the minors of P_{1} of order $q+k-p$. Hence the determinantal divisors of $P_{1}(x)$ and $P_{2}(x)$ are related by the equation

$$
\eta_{q+k-n}\left\{P_{1}\right\} \subseteq \eta_{k}\left\{P_{2}\right\}
$$

and letting $k=p-i$ gives

$$
\eta_{q-i}\left\{P_{1}\right\} \subseteq \eta_{p-i}\left\{P_{2}\right\}
$$

In an analogous manner it is possible to write

$$
\left(\begin{array}{cc}
W & -Z \\
M & P_{1}
\end{array}\right)\left(\begin{array}{cc}
P_{2} & 0 \\
-N & E
\end{array}\right)=\left(\begin{array}{cc}
I_{q_{2}} & -Z_{l_{1}, \ldots, l_{p_{1}}} \\
0 & I_{p_{1}}, \ldots, l_{p_{1}}
\end{array}\right)
$$

and therefore it can be deduced that the determinantal divisors of $P_{1}(x)$ and $P_{2}(x)$ are also related by the equation

$$
\eta_{k}\left\{P_{2}\right\} \subseteq \eta_{q+k-p}\left\{P_{1}\right\}
$$

Again letting $k=p-i$ gives

$$
\eta_{p-i}\left\{P_{2}\right\} \subseteq \eta_{q-i}\left\{P_{1}\right\}
$$

Therefore the following is true

$$
\begin{equation*}
\eta_{p-i}\left\{P_{2}\right\}=\eta_{q-i}\left\{P_{1}\right\} \tag{2.115}
\end{equation*}
$$

Now since the determinantal divisors are equal this implies that the invariant zeros must also be equal, giving

$$
\begin{equation*}
Z_{q-n}\left\{P_{1}\right\}=Z_{p-n}\left\{P_{2}\right\} \tag{2.116}
\end{equation*}
$$

which is the required result.

Note: So we see that invariant polynomials and invariant zeros are invariants of Z.C.E.

Definition 2.28 [26]
$\mathrm{P}_{1}\left(x_{1}, x_{2}\right), \mathrm{P}_{2}\left(x_{1}, x_{2}\right) \in \mathcal{P}(\mathrm{m}, \mathrm{l})$ are said to be FACTOR COPRIME EQUIVALENT (F.C.E.) if there exists polynomial matrices $\mathrm{M}\left(x_{1}, x_{2}\right), \mathrm{N}\left(x_{1}, x_{2}\right)$ such that

$$
\left[\mathrm{M}\left(x_{1}, x_{2}\right) \quad \mathrm{P}_{1}\left(x_{1}, x_{2}\right)\right]\left[\begin{array}{c}
\mathrm{P}_{2}\left(x_{1}, x_{2}\right) \tag{2.117}\\
-\mathrm{N}\left(x_{1}, x_{2}\right)
\end{array}\right]=0
$$

where the compound matrices

$$
\left[\mathrm{M}\left(x_{1}, x_{2}\right) \quad \mathrm{P}_{1}\left(x_{1}, x_{2}\right)\right] \quad ; \quad\left[\begin{array}{c}
\mathrm{P}_{2}\left(x_{1}, x_{2}\right) \tag{2.118}\\
-\mathrm{N}\left(x_{1}, x_{2}\right)
\end{array}\right]
$$

are factor coprime i.e. if all the $(r+m) \times(r+m)(r e s p .(r+l) \times(r+l))$ minors of $\left[\mathrm{M}\left(x_{1}, x_{2}\right) \quad \mathrm{P}_{1}\left(x_{1}, x_{2}\right)\right]$ (resp. $\left[\begin{array}{c}\mathrm{P}_{2}\left(x_{1}, x_{2}\right) \\ -\mathrm{N}\left(x_{1}, x_{2}\right)\end{array}\right]$) have no polynomial factor.

Corollary 2.3 [27]

Suppose that two polynomial matrices $\mathrm{P}_{1}\left(x_{1}, x_{2}\right), \mathrm{P}_{2}\left(x_{1}, x_{2}\right)$ with sizes $p_{1} \times q_{1}$ and $p_{2} \times q_{2}$ respectively and $p_{1}-q_{1}=p_{2}-q_{2}$, are related by a polynomial equation of the form

$$
\begin{equation*}
\mathrm{N}_{1}\left(x_{1}, x_{2}\right) \mathrm{P}_{2}\left(x_{1}, x_{2}\right)=\mathrm{N}_{2}\left(x_{1}, x_{2}\right) \mathrm{P}_{1}\left(x_{1}, x_{2}\right) \tag{2.119}
\end{equation*}
$$

where $\mathrm{N}_{1}\left(x_{1}, x_{2}\right), \mathrm{N}_{2}\left(x_{1}, x_{2}\right)$ are $p_{1} \times p_{2}, q_{1} \times q_{2}$ polynomial matrices and $\mathrm{N}_{1}\left(x_{1}, x_{2}\right), \mathrm{P}_{1}\left(x_{1}, x_{2}\right)$ are minor right coprime, $\mathrm{N}_{2}\left(x_{1}, x_{2}\right), \mathrm{P}_{2}\left(x_{1}, x_{2}\right)$ are minor left coprime.
(i). Let Let $d_{1}{ }^{[1]}\left(x_{1}, x_{2}\right), d_{2}{ }^{[1]}\left(x_{1}, x_{2}\right), \ldots, d_{q}{ }^{[1]}\left(x_{1}, x_{2}\right)$, where $q=\min \left(p_{1}, q_{1}\right)$, denote the invariant polynomials of the polynomial matrix $P_{1}\left(x_{1}, x_{2}\right)$ and $d_{1}{ }^{[2]}\left(x_{1}, x_{2}\right), d_{2}{ }^{[2]}\left(x_{1}, x_{2}\right), \ldots, d_{p}{ }^{[2]}\left(x_{1}, x_{2}\right)$, where $\mathrm{p}=\min \left(p_{2}, q_{2}\right)$ denote the invariant polynomials of the polynomial matrix $P_{2}\left(x_{1}, x_{2}\right)$ then

$$
d_{q-i}{ }^{[1]}=c_{i} d_{p-i}{ }^{[2]} \text { for } i=0,1, \ldots, \max (p-1, q-1)
$$

where $d_{j}{ }^{[1]}=1, d_{j}{ }^{[2]}=1$ for $j<1, c_{i} \in \mathbb{R} \backslash\{0\}$.
(ii). Let $e_{1}{ }^{[1]}\left(x_{1}, x_{2}\right), e_{2}{ }^{[1]}\left(x_{1}, x_{2}\right), \ldots, e_{r}{ }^{[1]}\left(x_{1}, x_{2}\right)$, where $\mathrm{r}=\min \left(p_{1}, p_{2}\right)$, denote the invariant polynomials of the polynomial matrix $S_{1}\left(x_{1}, x_{2}\right)$ and $e_{1}{ }^{[2]}\left(x_{1}, x_{2}\right), e_{2}{ }^{[2]}\left(x_{1}, x_{2}\right), \ldots, e_{t}{ }^{[2]}\left(x_{1}, x_{2}\right)$, where $t=\min \left(q_{1}, q_{2}\right)$ denote the invariant polynomials of the polynomial matrix $S_{2}\left(x_{1}, x_{2}\right)$ then

$$
e_{r-i}{ }^{[1]}=c_{i} e_{t-i}{ }^{[2]} \text { for } i=0,1, \ldots, \max (r-1, t-1)
$$

where $e_{j}{ }^{[1]}=1, e_{j}{ }^{[2]}=1$ for $j<1, c_{i} \in \mathbb{R} \backslash\{0\}$.

Proof.

Since $\mathrm{N}_{1}\left(x_{1}, x_{2}\right), \mathrm{P}_{1}\left(x_{1}, x_{2}\right)$ are minor right coprime and $\mathrm{N}_{2}\left(x_{1}, x_{2}\right), \mathrm{P}_{2}\left(x_{1}, x_{2}\right)$ are minor left coprime there exist polynomial matrices $\mathrm{X}_{\mathrm{i}}\left(x_{1}, x_{2}\right), \mathrm{Y}_{\mathrm{i}}\left(x_{1}, x_{2}\right)$,
$\mathrm{W}_{\mathrm{i}}\left(x_{1}, x_{2}\right), \mathrm{Z}_{\mathrm{i}}\left(x_{1}, x_{2}\right)$ for $\mathrm{i}=1,2$ of appropriate dimensions such that

$$
X_{1} P_{1}+Y_{1} N_{1}=\psi_{i}\left(x_{1}\right) I_{q}
$$

$$
\begin{equation*}
\text { for } \mathrm{i}=1,2 \tag{2.120}
\end{equation*}
$$

$$
N_{2} Z_{1}+P_{2} W_{1}=\varphi_{i}\left(x_{1}\right) I_{p}
$$

where $\psi_{i}\left(x_{1}\right), \varphi_{i}\left(x_{1}\right)$ are polynomials. From (2.119) and (2.120) it follows that

$$
\left[\begin{array}{cc}
X_{1} & Y_{1} \tag{2.121}\\
N_{2} & -P_{2}
\end{array}\right]\left[\begin{array}{cc}
P_{1} & Z_{1} \\
N_{1} & -W_{1}
\end{array}\right]=\left[\begin{array}{cc}
\psi_{i}\left(x_{1}\right) I_{q} & J_{1} \\
0 & \varphi_{i}\left(x_{1}\right) I_{p}
\end{array}\right]
$$

where $J_{1}=N_{2} Z_{1}+Y_{1} W_{1}$. Now take $\mathrm{i}=1$ and replace $\left[\begin{array}{c}Z_{2} \\ -W_{1}\end{array}\right]$ with $\left[\begin{array}{l}0 \\ I\end{array}\right]$. Then (2.121) gives

$$
\left[\begin{array}{cc}
X_{1} & Y_{1} \tag{2.122}\\
N_{2} & -P_{2}
\end{array}\right]\left[\begin{array}{cc}
P_{1} & 0 \\
N_{1} & I_{p}
\end{array}\right]=\left[\begin{array}{cc}
\psi_{i}\left(x_{1}\right) I_{q} & Y_{1} \\
0 & -P_{2}
\end{array}\right]
$$

For any matrix Q let $Q_{j_{1}, \ldots, j_{h}}^{i_{1}, \ldots, i_{k}}$ denoted the $k \times h$ submatrix formed from rows i_{1}, \ldots, i_{k} and columns j_{1}, \ldots, j_{h}. Consider the following $(q+k) \times(q+k)$ submatrix formed from (2.122)

$$
\underbrace{\left[\begin{array}{cc}
X_{1} & Y_{1} \tag{2.123}\\
N_{1} i_{1}, \ldots, i_{k} & -P_{2}^{i_{1}, \ldots, i_{k}}
\end{array}\right]}_{A} \underbrace{\left[\begin{array}{cc}
P_{1} & 0_{q \times k} \\
N_{1} & I_{p_{1}} j_{1}, \ldots, j_{h}
\end{array}\right]}_{B}=\left[\begin{array}{cc}
\psi_{1} I_{q} & Y_{1 j_{1}}, \ldots, j_{h} \\
0_{k \times q} & -P_{2} i_{j_{1}, \ldots, \ldots, j_{h}}
\end{array}\right]
$$

Take determinants of both sides and use the Cauchy-Binet Theorem and (2.123) to show that

$$
\begin{equation*}
\sum_{1 \leq i_{1}<\ldots<i_{q+k}}\left|A_{l_{1}, \ldots, l_{q+k}}^{1, \ldots, q+k}\right|\left|B_{1, \ldots, q^{2}+k}^{l_{1}, \ldots, l_{q+k}}\right|=-\psi_{1}^{q}\left|P_{2}^{j_{1}, \ldots, j_{k}} i_{1}, \ldots, i_{k}\right| \tag{2.124}
\end{equation*}
$$

Now the form of B indicates that any factor of B of the type occurring in the left-hand-side of (2.124), for which $\left\{q+j_{1}, \ldots, q+j_{k}\right\}$ is not a subset of $\left\{l_{1}, \ldots, l_{q+k}\right\}$ is zero.

Thus all the non-zero minors of B which occur in the left-hand-side of (2.124) contain the rows $q+j_{1}, \ldots, q+j_{k}$. Such a factor is then expressible via Laplace expansion in terms of minors of N_{1} and P_{1}. The smallest minor of P_{1} occurring in this Laplace expansion is of order $q+k-p$. Therefore if $g_{i}^{[1]}\left(x_{1}, x_{2}\right)$ for $i=1, \ldots, q$ denotes the greatest common divisor of the $i \times i$ minors P_{1}, it follows that

$$
\begin{equation*}
g_{q+k-p}^{[1]}\left|\psi_{1}{ }^{q}\right| P_{2}{ }_{j_{1}, \ldots, j_{k}}^{i_{1}, \ldots, i_{k}} \mid \tag{2.125}
\end{equation*}
$$

where $g_{q+k-p}^{[1]}=1$ if $q+k-p \leq 0$.
If then $g_{i}^{[2]}\left(x_{1}, x_{2}\right)$ for $i=1, \ldots, p$ denotes the greatest common divisor of the $i \times i$ minors P_{2}, it follows from (2.125) and the fact i_{1}, \ldots, i_{k} and j_{1}, \ldots, j_{k} are arbitrary that

$$
\begin{equation*}
g_{q+k-p}^{[1]} \mid \psi_{1}{ }^{q} g_{k}^{[2]} \tag{2.126}
\end{equation*}
$$

On the other hand if we take $i=2$ then the same argument shows that

$$
\begin{equation*}
g_{q+k-p}^{[1]} \mid \psi_{2}^{q} g_{k}^{[2]} k=1, \ldots, p \tag{2.127}
\end{equation*}
$$

Statements (2.126) and (2.127) then imply since ψ_{1}, ψ_{2} are factor coprime

$$
g_{q+k-p}^{[1]} \mid g_{k}^{[2]} k=1, \ldots, p
$$

or, on writing $k=p-j$,

$$
\begin{equation*}
g_{q-j}^{[1]} \mid g_{p-j}^{[2]} j=0, \ldots, \max (p-1, q-1) \tag{2.128}
\end{equation*}
$$

where, if necessary, $g_{j}^{[1]}=1, g_{j}^{[2]}=1$ for $j<1$.
Now in (2.121) replace [$\left.\begin{array}{ll}X_{1} & Y_{1}\end{array}\right]$ with $\left[\begin{array}{ll}I_{q} & 0\end{array}\right]$ to give

$$
\left[\begin{array}{cc}
I_{q} & 0 \tag{2.129}\\
N_{2} & -P_{2}
\end{array}\right]\left[\begin{array}{cc}
P_{1} & Z_{1} \\
N_{1} & -W_{1}
\end{array}\right]=\left[\begin{array}{cc}
P_{1} & Z_{1} \\
0 & \varphi_{1} I_{p}
\end{array}\right] .
$$

The same argument surrounding (2.122) may now be used in the case of (2.122) to show that

$$
\begin{equation*}
g_{p-j}^{[2]} \mid g_{q-j}^{[1]} j=0, \ldots, \max (p-1, q-1) \tag{2.130}
\end{equation*}
$$

Statements (2.128) and (2.130) then yield, modulo a constant non-zero factor,

$$
\begin{equation*}
g_{q-j}^{[1]}\left(x_{1}, x_{2}\right)=g_{p-j}^{[2]}\left(x_{1}, x_{2}\right), j=0, \ldots, \max (p-1, q-1) \tag{2.131}
\end{equation*}
$$

Now $g_{h}^{[1]}\left(x_{1}, x_{2}\right), g_{h}^{[2]}\left(x_{1}, x_{2}\right)$ are the determinantal divisors of $D_{1}\left(x_{1}, x_{2}\right)$, $D_{2}\left(x_{1}, x_{2}\right)$ respectively, and so from the relationship between the determinantal divisors and their invariant polynomials the result (i) follows.

In the case of $N_{1}\left(x_{1}, x_{2}\right)$ and $N_{2}\left(x_{1}, x_{2}\right)$ the argument presented above will carry through with some minor modifications. Specifically, in the case $p \leq q$ for example, the equation corresponding to (2.121), for $i=1,2$, is

$$
\left[\begin{array}{cc}
X_{1} & Y_{1} \tag{2.132}\\
N_{2} & -P_{2}
\end{array}\right]\left[\begin{array}{cc}
P_{1} & E \\
N_{1} & 0
\end{array}\right]=\left[\begin{array}{cc}
\psi_{1} I_{q} & X_{1} l_{1}, \ldots, l_{p} \\
0 & l_{1}, \ldots, l_{p}
\end{array}\right]
$$

where the constant matrix $E_{q \times p}$ is the unit matrix I_{p} with $q-p$ zero rows to form a $q \times p$ matrix and l_{1}, \ldots, l_{p} correspond to the columns of the matrices N_{2} and X_{1} selected by multiplication by E. The analogue of (2.122) is obtained by selecting rows i_{1}, \ldots, i_{k} from the second block row and columns j_{1}, \ldots, j_{k} from the second block column. By considering all combinations of the rows of $E_{j_{1}, \ldots, j_{k}}$ and the form of the second matrix on the right-hand-side of (2.125), i.e. the only non-zero minors are those involving rows j_{1}, \ldots, j_{k} of the first block row, it is seen by taking all $1 \leq i_{1}<$ $\cdots<i_{k} \leq p$ and $1 \leq j_{1}<\cdots<j_{k} \leq q$ that

$$
h_{k}^{[1]} \mid \psi_{1}{ }^{q} h_{k}^{[2]}
$$

where $h_{k}^{[1]} h_{k}^{[2]}$ are the greatest common divisors of the $k \times k$ order minors of $N_{1}\left(x_{1}, x_{2}\right), N_{2}\left(x_{1}, x_{2}\right)$ respectively. Also by considering $i=2$

$$
h_{k}^{[1]} \mid \psi_{2}{ }^{q} h_{k}^{[2]} .
$$

Therefore, by similar reasoning surrounding (2.128)

$$
h_{k}^{[1]} \mid h_{k}^{[2]} \text { for } k=1, \ldots, p
$$

Now the equation corresponding to (2.129) is

$$
\left[\begin{array}{cc}
0 & E \\
N_{2} & -P_{2}
\end{array}\right]\left[\begin{array}{cc}
P_{1} & Z_{1} \\
N_{1} & -W_{1}
\end{array}\right]=\left[\begin{array}{cc}
N_{1 l_{1}, \ldots, l_{p}} & W_{1} l_{1}, \ldots, l_{p} \\
0 & \varphi_{1} l_{p}
\end{array}\right]
$$

where E and l_{1}, \ldots, l_{p} are defined in (2.132). Thus the result

$$
h_{k}^{[2]} \mid h_{k}^{[1]} \text { for } k=1, \ldots, p
$$

is obtained by a similar discussion to that following (2.125). Therefore

$$
h_{k}^{[1]}=c_{k} h_{k}^{[2]} \text { for } k=1, \ldots, p
$$

where $c_{k} \in R \backslash\{0\}$ for $k=1, \ldots, p$ and (ii) is established.

Note: So we see that invariant polynomials are invariants of M.C.E, since M.C.E. \equiv F.C.E. in 2-D polynomial matrices, the invariant polynomials are also invariants of F.C.E.

Referenences

［1］J．B．Fraleigh，＂A first course in Abstract Algebra＂，University of Rhode Island， 1989

 Өєбб人入ovíкŋ， 2006
［4］T．Becker，Volker Weispfenning，＂Gröbner Base：A computational Approach to Commutative Algebra＂，USA， 1993
［5］W．W．Adams，Philippe Loustaunau，＂An introduction to Gröbner bases＂， USA， 1994
［6］R．H．Vilarreal，＂Monomial Algebras＂，New York， 2001
［7］J．Herzog－Takayki Hibi，，＂Monomial Ideals＂，New York， 2011
［8］B．Buchberger－F．Winker，＂Gröbner Bases and Applications＂，Cambridge University Press， 1998
［9］R．Froberg，＂An introduction to Gröbner Bases＂，England， 1997
［10］Wikipedia ：monomial
［11］П．－Х．Г．В $\alpha \sigma \imath \lambda \varepsilon i ́ o v, ~ Г . ~ Т б \alpha к \lambda i ́ ŋ \eta \varsigma, ~ " Е \varphi \alpha \rho \mu о \sigma \mu \varepsilon ́ v \eta ~ \Theta \varepsilon \omega р i ́ \alpha ~ П \imath v \alpha ́ к \omega v ", ~$ Өєбба入оvíкп， 2003
［12］W．A．Wolovich，＂Linear Multivariable Systems＂，Springer－Verlag New York， 1974
［13］F．R．Gantmacher，＂The Theory of Matrices＂，Vols 1 and 2 Chelsea Publishing Co．New York， 1974
［14］W．J．Rugh，＂Linear System Theory＂，Prentice hall New Jersey， 1996
［15］A．C．Pugh，P．Fretwell，G．E．Hayton，＂Some transformations of Matrix Equivalence arising from linear systems theory＂，American Control Conference， 1983
［16］D．C．Youla，G．Gnavi，＂Notes on n－dimensional systems．＂，IEEE Transactions on Circuits and Systems，26，105－111， 1979
［17］P．S．Johnson ET．AL．，＂A polynomial matrix theory for a certain class of two－ Dimensional Linear Systems．＂，Eisevier Science Inc．， 1996
［18］A．C．Pugh，A．K．Shelton，＂On a new definition of strict system equivalence＂， International Journal of Control，27，657－672， 1978
［19］A．C．Pugh，S．J．McInerney，El－Nabrawy，＂Zero structures of n－D systems＂， International Journal of Control，78，277－285， 2005
［20］E．Rogers ET．AL．，＂Control Systems Theory and Applications for Linear Repetitive Processes＂，Springer， 2007
［21］C．Chen，＂Linear System Theory and Design＂，Oxford University Press， 1999
［22］H．Blomberg，R．Ylinen，＂Algebraic Theory for Multivariable Linear Systems＂，Academic Press， 1983
[23] A.C. Pugh ET. AL. , "A transformation for 2-D linear systems and a generalization of a theorem of Rosenbrock", International Journal of Control, 71, 491-503, 1998
[24] A.C. Pugh ET. AL. , "A Transformation for 2-D Systems and its Invariants", $35^{\text {th }}$ Conference in Japan, 1996
[25] K. Galkowski, "Elementary Operations and Equivalence of two-dimensional system", 63:6, 1129-1148, Institute of Telecommunication and Acoustic, Poland 2007
[26] N.P. Karampetakis, S. Vologiannidis, "Infinite elementary divisor structurepreserving transformations for polynomial matrices", International Journal of applied Mathematics and Computer Science, August 2003
[27] D.S. Johnson, 1993, "Coprimeness in Multidimensional System Theory and Symbolic Computation", P.h.D. Thesis, Loughborough University of Technology, U.K.
[28] S.J. McInerney, "Representations and Transformations for Multi-dimensional Systems", P.h.D Thesis, Doctor of Philosophy of Loughborough University, August 1999

