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HEPIAHYH

XV Topovco SITAOUATIKY Epyocia yivetal peAétn tov Bacewv Grobner kot tov
aAyopiBpov evpeong toug (Buchberger alyopiBuoc). Eniong mpayuatevetal oyioelg
1oodvvapiag kot cvykekpiéva ioodvvapieg 1-D kot 2-D moivevopikdv mvakov. H
epyocio elvar yopiopuévn oe 600 péEp.

To npdTo PEPOG TG Epyaciag, acyoreiton pe Tig faceig Grobner, kabmg Kot Tov
alyopiBpo tov Buchberger yio v e0peon avtav. Eniong, dtvetar o tpodmog edpeong
TOVG Héca amd to Tpdypoupo Mathematica.

To devtepo péPog TS epyaciog, mepthapPavet Evvoleg tov 1-D ko 2-D
TOAVOVOUIK®OV TIVAK®OV KOl To. oNpeia 6Ta omoia avtéc dtapépovv. Emiong, yivetot
EKTEVIG aVAALGT TG avTIoTPEYLUNG loodvvapiog (unimodular equivalence) tov
APOPA TOAVOVILIKOVS TIVAKES 1010V SLOUGTACEMV KoL TG YEVIKELUEVIC OVTIOTPEYIUNG
eodvvapiog (extended unimodular equivalence) Tov apopd TOAVOVLUIKOVG TIVOKEG
drapopetikmv dactdoswv. Télog, divovtar ot zero coprime kou factor coprime
1G0dVVOIEG Kot T, avOALOI®MTO GTOLYEID ALTMV.

AEZEIX KAEIAIA

Movovouikn diataén, alyopbuoc dwaipeong, Paoeic Grobner, Buchberger
aAyoppog, iwoodvvopieg, Smith popoen, Tolvwvouikol mivakeg, oviioTpédyiun
160SVVOLLIO, YEVIKEDUEVT] OVTIGTPEWIUT 1o0dVVapic, Zero coprime wsodvvapia, factor
coprime toodvvayio
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ABSTRACT

In the present Thesis is studied the Grobner bases and their algorithm (Buchberger
algorithm). Moreover, it concerns about equivalence relations and specifically
equivalences of 1-D and 2-D polynomial matrices. This paper consists of two parts.

The first part of this thesis deals with Grobner bases, as well as Buchberger algorithm
for finding these. Furthermore, it is given the way to find them through the program
of Mathematica.

The second part of this thesis includes notions of 1-D and 2-D polynomial matrices
and the points on which they differ. There is also an extensive analysis of the
unimodular equivalence which is about polynomial matrices of the same dimension
and of the extended unimodular equivalence that is about polynomial matrices of
different dimensions. Lastly, given the zero coprime equivalence and factor coprime
equivalence and the invariants of them.

AEZEIX KAEIAIA

Monomial ordering, division algorithm, Grébner bases, Buchberger algorithm,
equivalences, Smith form, polynomial matrices, unimodular equivalence, extended
unimodular equivalence, zero coprime equivalence, factor coprime equivalence
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HPOAOI'OX

Ba MBera va ekQpac® TIg BEpUES LoV gvyapLoTiEG oTOV emPAETOVTA KOO YNTH HOL
K.Niwkorao Kopapmetdkn yio  Borfeta tov, TV ETGTNUOVIKT TOL KaH0d1ynon Kot
TNV 6LVOMKN emiPAeyn TG epyaciog avtng. Onwg emiong Kot yio TNV gukopic Tov
LoV £0MGE VO, GUVEYICM TIG GTOVOEG LLOV.

Ol axoUN Vo EVYOPIGTNC® TOL VITOAOITO, LEAT) TNG TPLEAOVS EMITPOTNG K.
Avtoviov Evotdbio kot tov k. Paydvn I'edpylo yio 1o xpdvo mov apiépwooy oty
peAéTn Ko aEloddynomn g epyaciog.

TéLog Ba O VO ELYOPIGTHC® TNV OIKOYEVELD LLOV Y10l TT) YUY OAOYIKT KO
OLKOVOLIKN Voo TAPIEN Kab’ OAN TV d1dpKela TV 6Tovdmv pov. Idaitepa Oa Ol
VoL EVXOPIETHG® TOV GVLLYO LoV, 0 0moiog Guveyilel va e otnpilel 6TV KON UAIKY
pov mopeia.
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Glossary of Notation

i1,02,mlk
JudzrJi

|Al, det (A)
adj(A)
rank (4)
A-1

A+

AT

Iy

Ror C;
the field of real numbers;

the ring of polynomials in the single indeterminates x with
coefficients in the field F;

the ring of polynomials in the n indeterminates x,, x,, ..., X,
with coefficients in the field F;

an ideal;

the natural numbers;

the k" order minor of the matrix A using rows iy, i,, ..., iy and
columns jy, ja, -\ Jis

the determinant of the matrix A4;

the adjoint of the matrix A4;

the rank of the matrix A4;

the inverse of the matrix A;

the generalized inverse of the matrix 4;
the transpose of the matrix A4;

the identity matrix with dimension p X p;
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Chapter 1

Grobner bases
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1.1 Primary notions and definitions

Initially, we will mention some primary notions and definitions, which will help us to
understand better the aftermath. The ring is one such a notion, which is an algebraic
structure with two binary operations.

The theory of rings sprang through the study of two specific rings classes, the ring of
polynomials in n variables over the real or complex numbers and the “integers” of a
body of algebraic numbers. First it was David Hilbert (1862-1943) who introduced
the term ring, but it needed to get to the second decade of 20" century to see a
completely abstract definition. The theory of computing rings was founded by Emmy
Noether (1882-1935) in her monumental work “Theory of Ideals in Rings ”, which
appeared in 1921.

Definition 1.1 [1]

A group, denoted < G,*>, is a set G, together with a binary operation  in G, such
that the following axioms are satisfied:

G1.The binary operation = is associative.

G2.There exists an element e in G, such that e x x = x * e = x for every x € G.
(This element e is called identity element for * in G)

G3.For every a in G, there exists an element a’ in G with the property a’ * a =
axa' = e.(The element a’ is called inverse of a as to the operation *)

Note: A group G is called abelian (in honour of Niels Abel) if the binary of the
operation * is commutative.

Definition 1.2 [1]

Aring, denoted < G, +,*>, is a set with two binary operations + and -, referred to as
addition and multiplication, which satisfies the following axioms:

R1.< G,+> isan abelian group.

R2.Multiplication is associative.

R3.For all a, b, c € R[x] the left distributivity law is valid, a(b + ¢) = ab + ac,
and the right distributivity law, (a + b)c = ac + bc.

If, in addition, multiplication is commutative too, i.e.a-b = b - a for all

11
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a,b €< G,+,*>,then < G, +,*> is called a commutative ring. < G, +,*> is called a
ring with 1, or ring with unity if it contains a distinguished element 1 with 1 # 0 and
l-a=aforalla €< G, +,x>.

Definition 1.3 [9]

The set of polynomials ay + a;x + a,x? + -+ + a,x™, a; € R, n finite, is denoted
R[x]. On R[x] we can define with the natural way the addition and multiplication.
Then it can be easily proved that R[x] isa ring.

Since R[x] is aring, it makes sense to consider the set (R[x])[y], i.e., polynomials in
y with coefficients in R[x]. We see that

RIxD] = {fo + iy + 2 + -+ fuy™ fi € R[x]}
={rg+nx+ny+nrnx?+nxy+ry?+-}
={go + g1 + gox* + -+ gnx™1g: € RIY1}
= (RlyDlx].

So (R[x])[y] = (R[y]I[x], and can therefore be denoted by R[x, y] without any risk
for confusion. Likewise, we can define the polynomial ring over R in n variables
X1, X5, ., Xn. This polynomial ring is denoted by R[x;, x5, ..., Xp,].

Example 1.1

We know that the axioms R1 — R3 of the ring are valid in every subset of complex
numbers which is group with the addition and closed as to the multiplication. For
example, < Z,+,>,< Q,+,>, < R,+,>and < C,+,> areall rings.

In ring theory, a special subset of a ring is an ideal. Ideals generalize certain subsets of
the integers. Ernest Eduard Kummer (1810-1893) was the person who introduced the
notion of “ideal of complex number ” in 1847, in his effort to retain the notion of
unambiguously analysis in some rings of algebraic integers.

12
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Definition 1.4 [4]

Let R[x] and S[x] be rings and f: R[x] — S[x] a mapping. Then f is called a
homomorphism of rings if the following hold:

(). fla+b)=f(a)+f(b)forallab e R[x]

(ii).  f(ab) = f(a)f(b) forall a,b € R[x]

If in addition R[x] and S[x] are rings with unities 1 and 1, respectively, then we
require that

(iii)- f(lR) = f(ls)

We will often drop this distinction and just write “1” and “0” even when more than
one ring is involved. A homomorphism f is called an embedding if f is injective, and
an isomorphism if f is bijective. A homomorphism from a ring R[x] to itself is called
an endomorphism, and an isomorphism from R to itself is called an automorphism.

Note: It follows from the definition that if f: R[x] — S[x] isa homomorphism, then
the image of the zero element in R[x] is the zero element in S[x], i.e. f(0g) = Og,
because for any r we have f(r) = f(r + 0g) = f(r) + f(0g) and hence f(0z) = Os.

Definition 1.5 [4]
Let f: R[x] — S[x] be a homomorphism of rings. We define the kernel of f by setting
ker(f) = {a € R[x]|f(a) = 0}

Lemma 1.1 [4]

Let f: R[x] — S[x] be a homomorphism of rings. The Ker(f) isa proper ideal of
R[x].

Proof. Ker(f) # @ since 0 € Ker(f).Ifa, b € Ker(f), then f(a) = f(b) =0,
hence f(a+b) = f(a)+ f(b) =0+ 0=0,andthusa + b € Ker(f).Ifa €
Ker(f)and r € R, then f(a) = 0, hence

flar) = f(@)f(r) =0f(r) =0

and thus ar € Ker(f). The ideal Ker(f) is proper since f(1z) = 15 # 0 and thus
1p € Ker(f).o

13
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Definition 1.6 [2]
A no-empty subset I of aring R[x] is called ideal of R[x], if the following are valid:

(1. a—-bel, forallabel, and
(i). rael,andar €l,forallr e R,anda € 1

If instead of relations ra € I, and ar € I, is valid only ra € I, for all r € R[x], and
a € I, then I is called left ideal of R[x]. Respectively, if is valid only the relation
ar € I, forall r € R[x],and a € I, then I is called right ideal of R[x].

If I = {0} is called trivial and if I # R[x] is called proper.

Before the notion of what a basis is, we will need some other notions first. The most
important notion is that of linear independence.

Definition 1.7 [3]

Let vy, vy, ..., v, €lements of k-vector space V. Linear relation of v, v,, ..., v, iSa
relation

k1U1 + kz U2 + oo + knvn == O (1.1)
where kq, k,, ..., k, € F.

The vy, v,, ..., v, are called linearly independent if there exists no relation between
them, except the trivial, where all coefficients k; are zero. Equivalents v;, v, ..., v,
are linearly independent if from a linear relation (1.1) we conclude that k; = 0, for
i=12,..,n

kivi +kyvp+ -+ kv, =09 ky = ky ==k, =0.

Example 1.2

A. Elements (1,0) and (0,1) of R-vector space R? is linearly independent,
since if

k,(1,0) + k, (0,1) = (0,0) = (ky,k;) =(0,0) > k; = k, =0
B. In k-vector space F™ denote
e; = (1,0,0,...,0),e, = (0,1,0, ...,0), ..., e, = (0,0, ...,0,1)

The elements e, e,, ..., e,, are linearly independent since if

14
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kie; + ky e, + -+ ke, = (0,0, ...,0) = (kqi, ky, ..., k) = (0,0, ...,0)
>k =k,=-=0
We also observe that, for the random element (a4, a,, ..., a,,)e F™, is valid that
(ai,ay,...,a,) = a,e; +a, e, + -+ aye,

Consequently, F* = S({ ey, €y, ..., €,}), wWhere S(X): the space spanned by the
set of X.

Definition 1.8 [3]

Basis of a k-vector space V is called a linearly independent generating set of V and it
is denoted by B, namely

B basis of V. & V = S(B)and B is linearly independent

Example 1.3

A The set B = {e,, e,} where e; = (1,0) and e, = (0,1) is a spanning set of R2.
It is also linearly independent for the only solution of the vector equation c;e; +
c,e, = 0 is the trivial solution. Therefore, B is a basis for R2. It is called the standard
basis for R2.

B. The elements x,x2, ... x™, ... of R[x] are a basis of k-vector space R[x]. The
set {x,x?,... x™, ...} of R[x] is linearly independent (since k;x™ +
ky x4+ kx™ =0 then k; =0, 1<j<s namely every finite subset of
{x,x2,.. x™, ...} is linearly independent) and every polynomial P(x) = a, + a;x +
-+ a,x™ belongs to S(x).

15
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1.2 Monomial Ordering

Before we introduce the notion of monomial ordering we should know the form of a
polynomial with more than one variable. Below is given first the definition of
polynomials of one and then of n variables.

Definition 1.9 [1]
Let R[x] aring. A polynomial f(x) with coefficients in R[x] is an infinity typical sum
Poaixt=ayg+axt + -+ ax™ + - (1.2)

where a; € R[x] and a; = 0 except for finite range of values of i. The a; are
coefficients of f(x). If for some i > 0 is valid a; # 0, the largest of them is called
degree of f(x). If there exists no such a value, then we say that f(x) has zero degree.

Definition 1.10 [10]

A monomial is a product of powers of variables with nonnegative integer exponents,
or, in other words, a product of variables, possibly with repetitions.

The constant 1 is a monomial, being equal to the empty product and x° for any
variable x is considered, this means that a monomial is either 1 or a power x™ of x,
with n a positive integer. If several variables are considered, say, x, y, z then each can
be given an exponent, so that any monomial is of the form x®y?z¢ with a, b, c non-
negative integers.

Every monomial has a representation of the form ax,f1x,f2 ... x,fn(a € F, B € N™).

Definition 1.11 [5]

We consider polynomials f (x4, x5, ..., X,) In n variables with coefficients in F. Such
polynomials are finite sums of the form ax;f1x,%z ... x, P, where a € F, and B; € N,
i=1,..,n Wecall x;%1x,2 .. x,Pn a power product.

16
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Example 1.4

The f =x,3+ x,%2+1and g = x,2 — 4x, + 8x,x5 are polynomials in n variables.

The basic of R[x4, x5, ..., X,], Which is a k-vector space, is the set, T", of all power
products,

™ = {xlﬁlxzﬁ2 ...xnﬁn|,8ie N,i=1,..,n} (1.3)

Sometimes we will denote x,;P1x,72 ... x,,Pr by xf, where B = (B4, B, ..., Bn)€ NV.

Definition 1.12 [9]

The degree of an element m = x,51x,P2 ...x,,n in a polynomial ring R[xy, X5, ..., Xp,]
is

deg(m) = By + o + -+ Bn (1.4)

The degree of a non-zero polynomialf (xy, x, ..., xn) = X ag, p, g X1P1x,P2 .. x, P
equals

deg(f) = max {deg(xlﬁlxzﬁ2 ...xnﬁ") ag, g,...p, * 0} (1.5)

To introduce the notion of Grobner bases and the algorithm which helps us to find
them, we should be able to compare any two power products.

The orders in the linear and one variable cases are used to define a division (or
reduction) algorithm.

Definition 1.13 [5]

By a term order on T™ we mean a total order < on T" satisfying the following two
conditions:

(). 1<xPforallxfeTr xf+1
(i). If x® < xB then x%xY < xFx?, for all x¥ € T".

Proposition 1.1 [5]

For x,x# € T™, if x® divided x? then x® < x#.

17
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Proof. By assumption there is an x¥ € T™ such that x# = x®x?. By condition (i) in
Definition 1.11 we have x¥ > 1 and so by condition (ii) we have xf = x%x" > x¢
as desired.o

To compare any two power products, the order must be a total order, that is, given any
x%, xP € T", exactly one of the following relations must hold

x® < xPorx®>xP orx® =xF (1.6)
Also, for any x2, x#,x¥ € T™ we have:
if x* < xPand xP < x¥ then x® < xV .7

If we want the reduction to be finite, we need that order be a well-ordering, that is,
there is no infinite descending chain xf1 > xf2 > ... in T™.

The most frequently used descriptions of ordering have at most two defining
conditions: a degree and a (normal or reverse) lexicographical comparison. The most
famous are:

a) Lexicographic order

b) Reverse lexicographic order

c) Degree lexicographic order

d) Degree reverse lexicographic order

» Let a=(ay,a,..,a,) and B = (B4, B, ..., By) be vectors belonging to Z'.
We define the total order <,,, on T™ by setting x¢ <., x? if either
DXieqga; < XieqBiy or (i) Ximia; = XM, B; and the left most non-zero
component of the vector a — S is negative. It follows that <;,, is @ monomial
order on R[xq,x,,..,x,] which is called the lexicographic order on
R[xq, %5, ..., x5 ] Included by the ordering x; > x, > -+ > x,,.

= Let a=(ay,ay,..,a,) and B = (B4, B, ..., Bn) be vectors belonging to Z'.
We define the total order <,.,, on T" by setting x@ <,, x? if either
DXz a; < Xleq By or (i) Xiia; = XM, B; and the right most non-zero
component of the vector a — S is negative. It follows that <,.,, is a monomial
order on R[xq,x,,...,x,] Which is called the reverse lexicographic order on
R[x4,x5, ..., x5 ] iIncluded by the ordering x; > x, > -+ > x,,.

» lLet a=(ay,ay..,a,) and B = (B4, B, -, Br) be vectors belonging to Z'.
We define the total order <gegie, ON T™ by setting x% <gegiex xP if either
X" a; <YM B or (i) Y a; =X", 6 and x¢ < xP with respect to

18
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lexicographic order with x; > x; > -+ > x,,. It follows that <g,ge, IS @
monomial order on R[xq,x,,..,x,] which is called the degree reverse
lexicographic order on R[x4,x5,...,x,] included by the ordering x; > x, >
> X

» Let a=(ay,ay..,a,) and B = (B4, B, ..., By) be vectors belonging to Z'.
We define the total order <gegrepiex ON T by setting x* <gegreviex xB if
either (DX, a; <YM, B, or (i) X, a; =X™, 6 and x¢ < xP the right
most non-zero component of the vector a — g is positive. It follows that
<deglex 1S @ Monomial order on R[xq,xy, ..., x,] Which is called the degree
reverse lexicographic order on R[xq,x,,...,x,] included by the ordering
X1 > Xy > > Xy

Example 1.5

A Consider the polynomial
p(xq1, %5, x3) = 2x2x3 + 5x1x,03 — 7xZx3

We assume that x; > x, > x3.

Let be 0=(2,3,0), p=(1,1,1) and y=(2,0,3), so a-p=(1,2,-1), B-y=(-1,1,-2), a-y=(0,3,-3)

and |a|=5,|B|=3 and |y|=5.

e With respect to Lexicographic order , p is written in decreasing order as :

p(x1, X5, x3) = 2x3x3 — TxZx3 + 5x1%,%3

Because the left-most non-zero entries of a-p and a-y are positive, therefore

X2x3 >0 X1X2%5 aNd x2x3 >, x2x3 respectively. But the left-most non-zero entry

of B-y is negative, therefore x2x3 >, x;x,x3.

e With respect to Reverse lexicographic order , p is written in decreasing order
as:

7223 2.3
p(xq, X9, X3) =-Tx{x5 + 5x1X,%3 + 2X7 %5

Because the right-most non-zero entries of a-p , a-y and -y are negative, therefore

2,.3 2,.3 2,.3 2,.3 i
X1X2X3 Zrevlex X1X2) X1X3 >reviex X1X3 aNA XTX3 >pepiex X1X2X3 respectively.

e With respect to Degree lexicographic order , p is written in decreasing order
as:
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— 9,23 7.2.3
P(xq, Xz, X3)= 2x17X5-TX7X5+5x1 XX 3
2.3 2.3 2.3 2.3
Because X{x35 >jop X1X2X3, X{X5 Sox X1X5 , X1X3 >pex X1X2x3 and |of>|B),

- 2..3 2..3 2..3
la|=[y], BI<ly|, therefore x{x; >deglex X1X2X3, X1X3 Zdeglex X1X3 and
X$x3 > gegiex X1X2%3 respectively.

= With respect to Degree Reverse lexicographic ordering , p is written in
decreasing order as :

P(x1, X2, X3)= 227 %3 -Tx 7 x3+5x1 %, %3
Because the right-most non-zero entries of a-f , a-y, B-y are negative and |a[>|p|,
|0L|:|’Y|, |B|<|'Y|1 therefore xlzxg >degrevlex X1X2X3 , x12x23 >degrevlex xlzx?? and
X$%3 > gegreviex X1X2X3 respectively.
B. Consider the polynomial

P(X1, Xp, X3, X4)=X1 X5 — 3X1X,X3 + 8Xpx3
We solve the exercise with x; > x, > x3 > x,.
Let be a = (1,0,0,2), g =(1,1,1,0) and y = (0,1,0,3), so a—b = (0,—1,—1,2),
a—y=(1,-10,—1)and B —y =(1,0,1,-3),and |a| =3 = |B], ly] = 4.
= With Lexicographic order, p is written in decreasing order as:

P(x1, X, X3, X4)=—3X1 XpX3 + X1 X2 + 8x,x3

Because |a| = |B], lal < |y| and |B| < |y|, and the left-most non-zero component of

the wvector a—pf is negative and a—y, [ —y is positive, therefore
X1XpX3 Spex X1X5, X1X2 >10x XaX5 ANd X XpX3 >p0x XoXo respectively.

= With Reverse lexicographic order, p is written in decreasing order as:
P(x1, X0, X3, X4)=—3X XpX3 + X1 X2 + 8x,x3
Because |a| = |B], |la] < |y| and |B| < |y|, and the right-most non-zero component

of the vector a—pf is positive and a—y, [ —y is negative, therefore
X1XpX3 oy X1X2, X1X2 >0 XoX3 aNd X XoX5 >0y XpX5 respectively.
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= With Degree lexicographic order, p is written in decreasing order as:
P(x1, X0, X3, X4)=—3X XpX3 + X1 X2 + 8x,x3

_ 2 2 3
Because |a| = |B], lal < |yland |B] < |y, and x1x,x3 >jex X1X5, X1X5 >iex X2X5
X1X2X3 ey XoX5, therefore xyx,X3 >gegiex X1X2, X1X§ >gegiex X2%;  and
X1X2X3 >geglex X2X; Tespectively.

= With Degree Reverse lexicographic order, p is written in decreasing order as:
P(x1, X3, X3, X4)=—3%X1 X X5 + X1X5 + 8x,x3

Because |a| = |B], |la] < |y] and |B| < |y|, and the right-most non-zero component
of the vector a—pf is positive and a—y, B —y is negative, therefore

2 2 3 3
X1X2X3 >degrevlex X1Xg, X1X4 >degrevlex X2X4 and X1X2X3 >degrevlex X2X4
respectively.

Definition 1.14 [9]

We call an ordering a degree ordering if the most important criterion for comparison
is the degree of the monomials. In the sequel we assume that a monomial order for T"
has been fixed.

Definition 1.15 [6]
Let be a non-zero polynomial in R[xy, x5, ..., X,].
One can write:
f=2i-iam; (1.8)
with a; € F — {0}, m; € T" and m; > -+ > m,..

= the leading term m; of f is denoted by lt(f)
= the leading coefficient a; of f is denoted by lc(f) and
= the leading monomial a; m, is denoted by Im(f).
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Example 1.6
A Consider the polynomial which is used in Example 1.5A:
Py, X2, X3)=2X7 x3+5x, XpX3-Tx{ x5
we prove that :
= with respect to lexicographic ordering, p is written in decreasing order as:
P(xy, X2, X3)= 2X7x3-Tx7 x5 +5x, x5
and therefore it can be seen from the above definition that :
i 1t(p) = x?x3
i. lc(p) =2
iii.  Im(p) = 2x2x3

= with respect to Reverse lexicographic ordering, p is written in decreasing
order as:

P(xy, Xp, x3)= -Tx2x3 + 5x, X3 + 2x2x3
i lt(p) = x¥x3
i. Ilc(p) =-7

iii.  Im(p) = —7xix3

= with respect to Degree lexicographic ordering, p is written in decreasing
order as:

— 9,23 7.2.3
P(xq, X9, X3)= 2x17X5-TXTX5+5x1 XX 3
i lt(p) = x¥x3

i. Ilc(p) =2
iii.  Im(p) = 2xfx3

= with respect to Degree Reverse lexicographic ordering, p is written in
decreasing order as:
P(xq, Xp, X3)= 2x2x3-TxZx3+5x, X, X5

i 1t(p) = x2x3
i. lc(p) =2
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iii.  Im(p) = 2x2x3

B. Consider the polynomial which is used in Example 1.5B:
P(x1, X2, X3, X4)=X1 X5 — 3X1X,X3 + 8x,x3
we prove that :
= with respect to Lexicographic ordering, p is written in decreasing order as:
P(x1, X0, X3, X4)=—3X XpX3 + X1 X2 + 8x,x5
and therefore it can be seen from the above definition that :

i 1t(p) = x1x5x3
i. lc(p) =-3
iii.  Im(p) = —3x1x,x3

= with respect to Reverse lexicographic ordering, p is written in decreasing
order as:

P(X1, X3, X3, X4)=—3%X1XX35 + X1 X7 + 8x,x3
i lt(p) = x1x3x3
i. lc(p) =-3

iii.  Im(p) = —3x1x,x3

= with respect to Degree lexicographic ordering, p is written in decreasing
order as:

P(X1, X3, X3, X4)=—3X1 X X5 + X1 X5 + 8x,x3
i. lt(p) = X1X2X3

i. lc(p) =-3
iii.  Im(p) = —3x,x,%3

= with respect to Degree Reverse lexicographic ordering, p is written in
decreasing order as:

_ 2 3
P(xq, X, X3, X4)=—3Xx1X2X3 + x x5 + 8x,x;
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i lt(p) = x1x5x3
i. lc(p) =-3
iii.  Im(p) = —3x;x,%3

Definition 1.16 [7]

Let I be an ideal of R[x;, x5, ..., x,]. The initial ideal of I, denoted by in(I), is given
by

in(l) = ({1e(HI0 # f e 1}). (1.9)
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1.3 Division algorithm

Before we define Gréobner bases , we have to deal with the division algorithm for
polynomials in more than one variables.

Firstly, we will see Dickson’s lemma, which is important because it will justify our
choice of T™ to be a finite set, in our examples.

Lemma 1.1 [9]
Every monomial ideal in R[xy, x5, ..., x,,] is finitely generated.

Proof. Let S = T™. We proceed by introduction on n. Since in R[x] is principal, the
lemma is true for n = 1. Suppose it is true for n — 1 variables, and let a be a
monomial ideal in R[xq, x5, ..., x,]. Let

by = (a =< x},>) N R[xy, %z, .., Xpq] =< S >.

Since b; isan ideal in R[xy, x5, ..., x,_4], we can choose S; to be finite. We have
by € by € ---. It follows easily that U b; is an ideal b in R[x;,x5, ..., x,,_1] and hence

finitely generated b =< S >. If m € a is a monomial then m = m'xX for some
monomial m € R[xq,x,, ..., x,_,] and some k.

Sincem'xk¥ € awegetm’ € a:< xX >, som e< xkS, >. Thus S’ = S, U x,S; U
x2S, U ... is a generating set for a. But for some r we have that S, = S, if k > 7, so
So Ux,S; U ..U x;,S, isa (finite) generating set for a.

Definition 1.17 [5]

Given f, g, hin R[xy,x,, ..., x,] With g # 0, we say that f reduces to h modulo g in

one step, written f A h, ifand only if lt(g) divides a non-zero term X that appears in
f and

h=f—— (1.10)

Example 1.7

Let f = x%2y + 4xy — 3y?, g = 2x + 4y + 1. Also, let the order be lexicographic
with x > y. We have It(f) = x%y and lt(g) = x.
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o lt(/lt(f) = f = xz—yg + py, Where p; = —2xy? + %xy — 3y?
o 1t(9)/ltlp) = f =2 g —y2g + p,, Where p, = Zxy + 4> — 2y?

o It(g)/lt(p) = f = xz—yg —y2g+ Zg + p3, Where p; = 4y3 — 9y?2 _Zy
e [t(g) doesn’t divide lt(p3)

So, we have

g 7 97 g 7
f > —2xy? +oxy = 3y2—>5xy+4y3— 2y? > 4y3 — 9y? —7Y

In the multivariable case we may have to divide by more than one polynomial at a
time, and so we extend the process of reduction defined above to include this more
general setting.

Definition 1.18 [5]
Let f,h and fi, ..., f; be polynomials in R[x4, x5, ..., x,], with f; # 0 (1 < i < s), and
let F = {fi, ..., fs}. We say that f reduces to h modulo F, denoted

fouh,
if and only if there exist a sequence of indices iy, ..., i; € {1, ...,s}and a sequence of
polynomial Ay, ..., hy € R[x4, x5, ..., x,] such that

a0l Dy

Example 1.8

Let f=xy%+2x, fi=xy—7v, f, =y%—1.Also, letthe order be lexicographic
with x > y. We have It(f) = xy?,1t(f;) = xy and lt(f,) = y2.

o lt(f)/lt(f) = f =yf1+p1, where p; = y? + 2x

o [t(f;) doesn’t divide lt(p,), while

o t(fR)/lt(p1) = f =yfi + fo + 2, Wherep, =2x +1
e None of lt(f;) doesn’t divide lt(p;), SO p, = 2x + 1.
Eventually,

f:)/f1+f2+2x+1
The above process according to Definition 1.18 can be described as follows:

fi f;
Foxy?+2x52x +1

It’s important to say that quotients and remainders of division depending as much on
the monomial ordering as the order of polynomials.

Now we will present the Generalized Division Algorithm:
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Theorem 1.1 [7]

Let S = R[xq,x5, ..., x,] denote the polynomial ring in n variables over a field F and
fix a monomial order < on S. Let g4, ..., g5 be non-zero polynomial of S. Then, given
a polynomial 0 # f € S, there exist polynomials f;, ..., f; and f’ of S with

f=hg1+ 92+ +fsgs + f (1.11)

such that the following conditions are satisfied:
(). if f'#=0andifu € supp(f'), where supp(f') = {u € T": a,, # 0}, then none of
the divides u, i.e. no monomial u € supp(f') belongsto (lt(gy), -, lt(gs);
(i). if f; # 0, then
1it(f) = it(f.g))

The right-hand side of equation (1.11) is said to be a standard expression for f with
respect to g4, ..., g5 and the polynomial f' is said to be a remainder of f with respect

t0 941, -, 9s-
To prove the Theorem 1.1, we need the following lemma:

Lemma 1.2 [7]
Let be a monomial order on S = R[x4, X5, ..., x,]. Then, for any monomial u of S,
there is no infinite descending sequence of the form

W< U <Uu <Uy=U (1.12)

Proof. Suppose, on the contrary, that one has an infinite descending sequence (1.12)
and write M for the set of monomials {uy, uy, ... }. It follows from Dickson’s lemma
(Lemma 1.1) that M™™" is a finite set, say M™" = {u;, ..., u;s} With i; < i, <+ <
is. Then the monomial u; ., is divided by u;; for some 1 < j <s. Thus Uy < Ui

which contradicts i; < ig44.0

Now, we are ready to prove Theorem 1.1:

Proof. Let I = (It(gq), ..., lt(gs)). If none of the monomials u € supp(f) belongs to
I and write respect to < among the monomials u € supp(f) belonging to I. Let, say,
lt(g;,) divide uy and wy = uy/lt(g;,)-

We rewrite

_ a1
f = coCiy Wogi, + ha,

where c; is the coefficient of u, in f and ¢,  is that of lt(g; ) in g;,. One has
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1t(wogs,) = wolt(gs,) = uo < It(f)

If either h; = 0 or, in case of h; # 0, none of the monomials u € supp(h,) belongs

to I, then f = C(')Ci;lWogio + h, is a standard expression of f with respect to g, ..., g

and h, isa remainder of f.

If a monomial of supp (h,) belongs to I and if u, is the monomial which is biggest

with respect to < among the monomials u € supp (h,) belonging to I, then one has
Uy > Uy

In fact, if a monomial u with u > u, (= Im(wyg;,)) belongs to supp(hy), then u

must belong to supp(f). This is impossible. Moreover, u, itself cannot belong to

supp (hy).

Let, say, lt(g;, ) divide u; and wy = u, /1t (g;, ). Again, we rewrite

f = cociy Wogi, + c1¢i Wi g, + hy
where ¢y is the coefficient of u, in hy and c;_ isthat of it(g;,) in g;,. One has

lt(wyg;,) < 1t(wogs,) < 1E(f).

Continuing these procedures yields the descending sequence
u0>u1>u2>'--

Lemma 1.2 thus guarantees that these procedures will stop after a finite number of
steps, say N steps, and we obtain an expression

_ VvN-1 .7 -1
f= Zqzo CqCi, Wqdi, + hy,

where either hy = 0 or, in case hy # 0, none of the monomials u € supp(hy)
belongs to I, and where

1t (wqg,) < -+ < 1t(wogs,) < Le(F).

Thus, by letting X5_, figi = Zg’;lc{qci;lwqgiq and f' = hy, we obtain an expression

f =i, fig: + f' satisfying the conditions (i) and (ii), as desired.o
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Example 1.9
Let f=x%2+y2—1,f; =x+yand f, =y + 1. Als, let the order be lexicographic
with x > y. We have lt(f) = x2, It(f;) = x and It(f,) = y.

o Ut(f)/lt(f)= f =xf, +p;, Wwherep; = —xy +y? -1

o 1t(fy)/1t(p) = f = xfi — yfi +pz, Where p, = 2y* — 1

e [t(f;) doesn’t divide It(p,), while

o 1t(fy) /1t(p) = f=xf1 —yfi + 2yf, + p3, Wherep; = =2y — 1
o It(fy) /lt(ps) = f=xf1 —yfi +2yf, — 2f; + ps, Where p, = 1

Eventually,

f=xfi—yfH+2f,—2f, +1,
or

f f f .
Fo—xy+y?—1-2y2-15-2y—-151
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1.4 Grobner bases

Grébner bases were introduced in 1965, together with an algorithm to compute them
(Buchberger; algorithm), by Bruno Buchberger in his PhD thesis. He named them
after his advisor Wolfgang Grobner. In 2007, Buchberger received the Association for
Computing Machinery’s Paris Kanellakis Theory and Practice Award for his work.
An analogous concept for local rings was developed independently by Heisuke
Hirokana in 1964 who named them standard bases.

Definition 1.19 [6]
Let I # (0) be anideal of R[x,, x5, ..., x,] and let G = {g4, g5, ---, g5} be a subset of I.
The set G is called a Grobner basis of I if

in(l) = (lt(gq), it( g3), -, 1t (gs) (1.13)
where g4, g5, ..., g5 are ordered with respect to a common ordering.

Theorem 1.2 [5]
Let I be a non-zero ideal of R[x4, x,, ..., x,]. The following statements are equivalent
for a set of non-zero polynomials G = {g,, 95, ..., 9s} € |

(i). Gisa Grobner basis for [
G
(i). felifandonlyif f—-,0
(iii). felifandonlyif f = Y7 h;g; with lt(f) = max;<;<; (It(h)1t(g:))
(iv). Lm(G) = Lm(I), where Lm(S) = {Im(s)|s € S}.
Proof. (i) = (ii) Let f € R[xq,x5,...,x,]. Then by Theorem 1.1, there exists
G
f' € R[xq1,x5, ..., x,], reduced with respect to G, such that f -, f'. Thusf — f' €1

G
and so f €1, if and only if f' € I. Clearly, if f' =0 (that is f -, 0), then f € ].
Conversely, if f € I and f' # 0 then f' € I and by (i), there exists i € {1, ..., s} such
that [t (g;) divides lt(f'). This is a contradiction to the fact that f’ is reduced with

G
respectto G. Thus f' = 0and f —, 0.
G
(i) = (iii) For f € I, we know by hypothesis that f —, 0 and since the process of

reduction is exactly the same as the Division Algorithm, we see that (iii) follows from
Theorem 1.1.

(iii) = (iv) Clearly, Lm(G) < Lm(I). For the reverse inclusion it suffices to show
that for all f € I, Im(f) € Lm(G), since the Im(f)’ generate Lm(I). Writing f as in
the hypothesis, it immediately follows that

Im(f) = X; Im(hy)Im(g;),
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where the sum is over all i such that lt(f) = lt(h;)t(g;). The result follows
immediately.

(iv) = (i) Let f € I. Then lm(f) is in Lm(G), and hence

Im(f) = Xi_; hilm(g;), (1.14)

for some h; € R[xq, x5, ..., x,]. If we expand the right-hand side of Equation we see
that each term is divisible by some lt(g;). Thus Im(f), the only term in the left-hand
side, is also divisible by some [t (g;), as desired.o

Example 1.10

Let f = x3y? + 2xy + 2x + 2y, f; = x?y? + 2x and f, = xy + 1. Also, let the
order be lexicographic with x > y. We have It(f) = x3y?, It(f;) = x?y? and
Im(f;) = xy.

o Ut(f)/t(f) = f = xf, + py, where p;, = —2x2 + 2xy + 2x + 2y
e 1t(f), lt(f,) don’t divide lt(py), SO p; = —2x2 + 2xy + 2x + 2y isa
remainder of f.

Now we will solve it slightly different:

o It(f))/lt(f) = f = x*yf, + p;, Where p; = —x2y + 2xy + 2x + 2y

o 1t(f)/lt(p)) = f = x*yf, — xfo + py, Where p, = 2xy + 3x + 2y

o Ut(f)/lt(p) = f =x*yf, — xfo + 2f, + p3, Where p; = 3x + 2y — 2

o t(f,), lt(fy) don’t divide lt(p3), SO p3 = 3x + 2y — 2 is another remainder
of f.

We notice that in the division algorithm a remainder of f is, in general, not unique.
However,

Lemma 1.3 [7]

If G ={g1,92 --,95}1Sa Grobner basis of I = (g4, g2, ---, gs), then for any non-
zero polynomial f of R[x4, x5, ..., x,,], there is a unique remainder of f with respect to

91,92, - Ys-

Proof. Suppose there exist remainders f' and f'’ with respect to g4, g5, ..., gs With
f'# f".Since 0 = f' — f"" € I, the initial monomial w = lt(f" — f'") must belong
to Im(I). However, since w € supp (f")Usupp(f'"), it follows that none of the
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monomials It (g,), it( g,), ..., lt(g;) divides w. Hence
in(I) # (lt(g,),1t( g5), ..., lt(g+)) a contradiction.

Corollary 1.1 [7]

If G ={g1,9, --,9s} 1sa Grobner basis of I = (g4, 95, ---, gs), then a non-zero
polynomial f of R[x,, x5, ..., x,] belongs to I if and only if the unique remainder of f
with respect to g4, g, ..., g5 IS 0.

Proof. First, in general, if a remainder of a non-zero polynomial f of R[xy, x5, ..., X,]
with respect to g4, g, ..., g5 In 0, then f belongsto I = (g1, 92, -, 9s)-

Second, suppose that a non-zero polynomial f belongsto/ and f = fi9, + f292 +
-+ f.gs + f'isa standard expression of f with respect to g4, g,, ..., gs. Since f €
lonehas f' e I.If f" # 0, then it(f") € in(I). Since G is a Grobner basis of I, it
follows that in(I) = (lt(g,), t(gs), ..., lt(gs)). However, since f' is a remainder,
none of the monomials u € supp(f") can belong to (it(g,), lt(g,), ..., lt(gs)).O

Definition 1.20 [6]

A Grobner basis G = {g4, g,, ..., gs} 0f anideal I is called a Reduced Grébner basis
for I if

@i). lc(g;) =1Vi and
(ii).  none of the terms occurring in f; belongs to in(G — {g;}) Vi

Reduced Grébner basis is very important due to its uniqueness. As a result of its
uniqueness, we have the next theorem:

Theorem 1.3 [6]
A reduced Grobner basis exists and is uniquely determined.

Proof. (Existence) Let I be a non-zero ideal of R[xy, x5, ..., x,,] and {uy, uy, ..., ug} the
unique monomial system of monomial generators of in(I). Thus, for i # j, the
monomial u; cannot be divided by u; for each 1 < i < s, we choose a polynomial

g; € I with lt(g;) = u;.

Let g, = fo9, + -+ + f;9s + hy be a standard expression of g, with respect to
92, -, gs, Where h; a remainder. It follows from the property (ii) required in the
division algorithm that It (g,) coincides with one of the monomials
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It(f,), lt(gy), ..., lt(f,), It (gs), lt (hy). Since It (g,) = u, can be divided by none of
the monomials it(g,), ..., lt(gs), one has lt(hy) = lt(g,). Hence {hy, g5, ...,gs}iSa
Grobner basis of 1. Since the monomial h, is a remainder of a standard expression of
g1 With respect to g,, ..., g5, €ach monomial of supp (h; ) is divided by none of the
monomials it (g,), ..., lt(gs).

Similarly, if h, isa remainder of a standard expression of g, with respect to

hi, 93, 9a» -, gs, the one has It (h,) = lt(g,) and each monomial of supp(h,) is
divided by none of the monomials It(h,), lt(g53), ..., (t(gs). Moreover,

{hi, hy, g3, ..., gs} is a Grobner basis of 1. Since lt(h,) = lt(g,), each monomial of
supp (h,) is divided by none of the monomials [t (h,), lt(g3), ..., lt(gs).

Continuing these procedures yields the polynomials {hs, h,, ..., hs} which satisfies
condition (ii). Dividing h; by the coefficient of It (h;) for all i, we obtain a reduced
basis of I.

(Uniqueness) Let {g1, g2, ---, gs} and {hy, h,, ..., h;} be reduced Grobner bases of 1.
Since {it(g,),1t( g;), ..., lt(gs)} and {lt(h,), lt( hy), ..., lt(h,)} are the minimal
system of monomial generators of the initial ideal in(1) of I, we may assume that
s=tandlt(g;) = lt(h) forall 1 <i<s(=t). If g; # h;,then0 = g; —h; €1
and lt(g; — h;) < lt(g;). In particular It(g;) cannot divide lt(g; — h;). Since the
monomial lt(g; — h;) must appear in either supp(g;) or supp (h;), it follows that
lt(g; — h;) cannot be divided by t(g;) with j # i. Hence, lt(g; — h;) & in(I). This
contradicts g; — h; € 1.0
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1.5 Buchberger’s algorithm

In this chapter, we will present the Buchberger’s algorithm. The Buchberger’s
algorithm helps us to find a Grobner basis, which got its name by Bruno Buchberger.
A useful computational definition of Grobner bases is in terms of S-polynomials. Let
itbe L = lem(lt(f), It(g)), where lcm is a least common multiple.

Definition 1.21 [5]
Let 0 # f,g € R[xy, x5, ..., x,]. The polynomial

L

L
SE D =05~ m? (1.15)

is called the S — polynomial of f and g.

Example 1.11

A Let G ={f,g}, where f =2xy%?z—xyz? and g = x?yz — z? with respect to
lexicographic order and x >y > z. We have Im(f) = 2xy?z, lt(f) = xy?z and
Im(g) = lt(g) = x%yz, and therefore L = x2y?z.

-1

X
g=5f~yg=—x"yz*+yz’

x2y?z x%y%z

f—

5(f,9) =

2xy?z x2yz

B. Let G ={f, g}, where f = x2y + 2x + 1 and g = xy + 2y with respect to degree
lexicographic order and x >y > z. We have Im(f) = x%y = It(f) and Im(g) =
It(g) = xy, and therefore L = x?2y.

x%y  x%y
S(f,9) =%f—gg=f—xg=—2xy+2x+1
Theorem 1.4 [5]

Let G = {94, 95, ..., gs} be a set of non-zero polynomials in S = R[xq, x5, ..., X,].
Then G is a Grobner basis for the ideal I =< g4, 95, ..., gs > if and only if for all
i +],

G
5(9i,9;) =+ 0.

In order to prove Theorem 1.4, we need the following lemma :
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Lemma 1.4 [5]

Let 91,92, -, 9s € R[xq,%5,...,x,,] be such that it(g;)) =X=#0foralli=1,..,s.
Let g=>/_,¢cg9; with ¢;€F, i=1,..,s. If lt(g) <X, then g is a linear
combination, with coefficients in F, of S(g;, 9;), 1 < i,j < s.

Proof. Where g; = a;X + lower term,a; € F. Then the hypothesis says that
Ys_1c9; = 0, since the ¢;’s are in F. Now, by Definition, S(g;, g;) = igi —%gj,
i j

since It(g;) = lt(g;) = X. Thus
g =091+ 02+t CsGs

1 1 1
= C1a1(a_191) + ca; (a—z)gz + -t CSaS(a_S)gs

1 1 1 1
=ca (a_191 - a_zgz) + (c1a4 + cza;) (a—zgz —a—393) 4o

1 1 1
(crag + -+ cs_1a5_1) (agsq - a_sgs) + (ciag + -+ Csas)a_sgs

= ¢,0,5(91,92) + (c1a; + c20a,)5(g2, g3) + -+ +
(cray + -+ cs_1a5-1)S(gs-1, gs),

since ¢;aq + -+ c;a, = 0.0
Now we can prove Theorem 1.4:

Proof. If G = {g4, 9, ---, gs} IS @ Grobner basis for I =< g4, g5, ..., gs >, then
G
5(gi,9;) —+ 0forall i # j by Theorem 1.2, since S(g;,9;) € I.

Conversely, let us assume that S(g;, g;) i+ 0 for all i # j. We will use Theorem 1.2
(iii) to prove that G is a Grobner basis for I. Let f € I. Then f can be written in many
ways as a linear combination of the g;’s. We choose to write f = }.?_; h; g;, with

X =max;;<s(It(h;)1t(g:))

least (here we use the well-ordering property of the term order). If X = lt(f), we are
done. Otherwise, lt(f) < X. We will find a representation of f with a smaller X, and
this will be a contradiction. Let S = {i| lt(h;)It(g;) = X}. Fori € S, write h; =

c;X; + lower terms. Set g = X5 X;g;- Then, lt(X;g;) = X, forall i € S, but
It(g) < X.ByLemma 1.4, there exist a;; € F such that

g= Z d;iS(Xi9:,X;9;)

i,jES,i# ]

Now, X = lcm(lt(Xl-gi), lt(X]g])), SO
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X
S(XigiJ ngj) = legl ( ) ]g]

X
Im(g;

591~ lm(g a9 = S(gug,)

G
where X;; = lem(lt(g;),lt(g;)). By hypothesis, S(g;, g;) =+ 0, and so we see from

this last equation that S(X;g;, X;g;) f,+ 0. This gives a representation
S(Xi9:X19;) = X5-1 hij 9o,
where Theorem 1.1
MAX1<y<s (lt(hijv)lt(g,,)) =t (S(Xl-gl-,ngj)) < max (lt(Xigi),lt(ngj)) =X
Substituting these expression into g above, and g into f, we get f = X.¥_; h; g;, with

maxlSiSS(lt(hl{)l It (gi)) <X.

This is contradiction.o

Example 1.12
A. According to Example 1.11A, we have f = 2xy%z — xyz?, g = x%yz — z? and

S(f,g) = _71x2yzz + yz?. We have lt(f) = xy?z, It(g) = x?yz and 1t(S(f,9)) =
x2yz2,

o It(f) doesn’t divide it(S(f, g)), while
o 1t(9)/lt(S(f,9) = S(f,9) = %Zg + p,, Where p; = yz2 —§

3
o 1t(g),lt(f) don’t divide It(p,),S0 p; = yz? — Z; is the remainder.

Asaresult, G = {f, g} isn’t a Grébner basis.

B. According to Example 1.11B, we have f = x?y+2x+1, g = xy + 2y and
S(f,g) = —2xy + 2x + 1. We have It(f) = x%y, It(g) = xy and t(S(f,g)) =
xy.
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o It(f) doesn’t divide It(S(f,g)), while

o 1t(g)/1t(S(f,g)) = S(f, g) = —2g + p;, Where p; = 2x + 4y + 1
e It(g), lt(f) don’t divide lt(p,), SO p; = 2x + 4y + 1 isthe remainder.

Asaresult, G = {f, g} isn’t a Grobner basis.

Finally, below is given Buchberger’s algorithm for computing Grobner bases.
[5,6,7,8]

F={fi,fo, ., fs} € R[x1, %, ..., x] With g; #0 (1 <i<s), we find a set G =
{91, 92, -, 9s}, which is a Grébner basis for I =< fi, fo, ..., f >.

Stepl. Let G =Fandg = {{fi,fj}|fi * fj € G}

Step2. While G # &, we choose any pair of G and then update G = G — {{f;, f;}}

G
Step3. Compute S(f;, f;) =4 h.
Stepd. If h = 0: repeat Step 2-Step 4 until G = &, otherwise update G and G as
follows:

G = GU{{w, h}|for all u € G}
G = GU{R)

Step5. Repeat Step 2 — Step 4, until G = .0

Example 1.13

A Let I =<f; =xy—x,f, = x%—y >. We use the lexicographic order with
x>y.

o LetG ={f,f,}and G = {{fi, f2}}. We choose the pair {f;, f>}.
e Theng =

o We compute S(fy, ) = —x*+ y* and S(f;, f2) E>+ y? =y =f350
G ={f., fo. fz}and G = {{f1, 3} {f2. fz}}

G
o S(fi,f3) =0and S(fy, f3) = x*y — y*, we find S(f, f3) =4 0.
e G =, s0 we stop here.

Eventually, G = {fi, f>, f3} is a Grobner basis for the ideal I.
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Reduced Grobner basis of G = {f;, f5, f3s} is the same because none of the lt(f;)
divide any of the others it (f;), with f; # f;.

B. Let I=<f; =y2+yx+x2f, =y+x,f; =y > Weuse the lexicographic
order with y > x.

Let G = {flerJf3} and g = {{f1:f2}.{f1'f3}.{f2'f3}}

Then G ={{f1, f3}. {f2, f33}
We compute  S(f,fo) =x*=fs SO G={fi.fofsfau} and
G ={fv. 32 LA AL b s fa) )

G = fsb U fib (o £, (i £} and S, £5) —4 O, then

G={Uufib U fib s i} and  S(af)oix=f  and
G={fifofsfafs}
G ={fv ib (2 3 A b U L U fsb Ufs fsh Ufan /53 and S(fY, fa)

E’+ 0 and then, G = {{f2, fa}. {f3. fab. {f1. fs} (o, fs 3. Ufs, fs 1 U f5 33
All the other S(f3, f2), S(f3, fa), » SU1, fs)s » S fs)y S(fs f5), S(far fs5)

G
-, 0and G = J, so we stop here.

Eventually, G = {f1, f2, f3, fa, f5} 1S @ Grobner basis for the ideal /.

Reduced Grobner basis of G = {f3, fs}.
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1.6 Grobner bases in Mathematica

Generally, computing Grébner basis by hand is cumbersome, and may be impractical
in many occasions. However, with the development of fast computers, Buchberger’s
algorithm is now implemented in many Computer Algebra packages e.g Theorema,
Maple, Mathematica, Singular and CoCoA. Theorema is developed by Buchberger
and his team.

The Theorema language allows to integrate computations (“programming”’) along
with mathematical theorem proving as another crucial ingredient of theory
exploration. As an example, it is coded an operator-based algorithm for computing
Green's operators for linear boundary problems (both ODEs and simple PDESs)
directly in a Theorema notebook. Their approach relies on a noncommutative
Grabner basis that describes the relations of the basic analysis operators appearing
in boundary problems;

In Mathematica, we have to use the command :
GroebnerBasis[{...}.{x,y,z, ....}] and then shift + enter.

In the first bracket, we put f; and in the second bracket, we put the unknown
variables.

Example 1.14
A. Consider the ideal
I=<x3y+x+y+1,y3+x%2+z2z%y+2%2>

The reduced Grobner basis for I with respect to the lex ordering with z < y < x is
computed using Mathematica and is given by:

S o ————
- P P F— i

a~

In[20:= GroebnerBasis[{y«X*3+X+¥V+1, 2+ X2+ 7" 3, Yaz2"2+2"2}, {x, ¥, Z2}1] ]]

Out[30}= -:—za—zg, zz—yzz, l—Ey—yz—ya—Ey:‘—y

—z—&y"z—SyEz—z:—za,
3 4 5 ] 7 ] ] 10 - - R
1+¥=+¥ -V +¥ -¥ -¥ =¥ -¥ =¥ +Z+XZ-¥2Z-+Y 2-2y 2-2y¥ Z+

EyEZ—ZyEz—Sy"'z—Szz—za, x—xy—ya—y?—z—quz—zz, xz—ya-zl

11

Groebner basis  curl div  polynomial reduce = more... El

This is the reduced Grobner basis :
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fi=-z3+2z*
fo= 2° +yz?
fs=14+2y+y?>+y3 =2y +y1 + z—4y*z+ 3y8z — 22 + 23

fa=1+y+y =y +y° -y -y +y8 =y +y 0tz 4+ xz—yz + y*z
—2y3z —2y*z+ 2y5z — 2y%z+ 3y7z + 52% — 73

fo=x+xy—y3+y" —z+2y*z—z?2

foe=x*+ y3+z

B. Consider the ideal

I=<xy—xy°—1,x—1>

The reduced Grobner basis for I with respect to the lex ordering with x > y is
computed using Mathematica and is given by:

Groebner basis  polynomial reduce  polynomial GCD = polynomial LCM = more... > £ @

This is the reduced Grobner basis :

f=y?—1landg=x-—1

C. Consider the ideal

[=<y?+yx+x%y+xy>

The reduced Grobner basis for I with respect to the lex ordering with y > x is
computed using Mathematica and is given by:
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1% Untitled-2

In[41= GroebnerBasis[{¥y*2 + vax+x™2, v+x, ¥}, {v, x}]
Outldi= {x, ¥}

reverse  curl div  array rules more... E

This is the reduced Grobner basis :

fa=yand fs =x
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Chapter 2

Equivalence of Polynomial Matrices
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2.1 1-D Polynomial Matrices

2.1.1 Important Notions and Definitions

Definition 2.1 [3]
A polynomial n X m — matrix over the body F is a matrix with elements
polynomials where they have coefficients of F. Such a matrix is denoted

p11(x) . Pim(x)
P(x) — b2 1:(x) errﬁ (x) (2.1)
pnl(x) pnm(x)

where p;;(x) € R[x]. Fora matrix A = (a;;) € My, ,»(F) and for a natural number s,

we define
x°A = (x°a;j).

We may represent the polynomial matrix P (x) in the form of a matrix polynomial in
x, i.e., in the form of a polynomial in x with matrix coefficients:
P(X) =Poxl+P1xl_1+"'+Pl_1x+Pl.

Now we will see some important properties of polynomial matrices without
attempting to generalize these properties to include all matrices with elements in a
commutative ring.

The theory of elementary divisors, invented by Sylvester, H.J.S Smith, and, more
particularly, Weierstrass, and perfected in important respects by Kronecker,
Frobenious, and others.

In particular, we now have:

Definition 2.2 [12]

The following three elementary row (column) operations on the polynomial matrix

P(x) with coefficients in R are defined

(i)  Interchange of rows (columns) i and j.

(i)~ Multiplication of row (column) i by a nonzero scalar in R (c # 0).

(i)  Replacement of row (column) i by itself plus any polynomial multiplied by
any other row (column) j (for example the i — th of any other row, for
example the j — th multiplied by any arbitrary polynomial b(x)).
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The operations (i), (ii) and (iii) are equivalent to a multiplication of the polynomial
matrix P (x) on the left by the following square matrices of order, respectively [13]:

1 i e e 0
o)
1 e 0
i)y s"=| c \I
! 2
1 0
(iii) 5=i/ ! b?) \i
\; ;)

In the same way, we define the right elementary operations on a polynomial matrix,
the matrices (of order m) corresponding to them are:

(=)
—_

i) T

—
o

= cee eee eee
\_—
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1 -

i)y T

: b(x)

0o -

Definition 2.3 [12]

The rank p of a matrix P, denoted a p(P), is equal to the maximum number of
linearly independent columns (or rows) of P over the smallest field F which contains
the elements of P.

Definition 2.4 [12]

We introduce a concise notation for determinants formed from elements of the given
matrix:

[Fisks  Qigk, T Qigky|
T 7 RP iy,  Qigk, *° Qigk,
A =| " . . . (2.2)
ky ky .. ky : : “ :
Aiyky,  Qipk, 0 Qiyky,

Definition 2.5 [14]

A n x m polynomial matrix P(x) is a matrix with entries that are real coefficient
polynomials in x.

A square (n = m) polynomial matrix P (x) is called nonsingular if det P(x) isa
nonzero polynomial, and unimodular if det P(x) is a nonzero real number.

Thus an alternative characterization is nonsingular if and only if det P(x,) # 0 for
all but a finite number of complex number x,. And P(x) is unimodular if and only if
det P(x,) # 0 for all complex numbers x,,.

Between a matrix and its inverse we have that, P~1(x) is unimodular if P(x) is

unimodular. Conversely if P(x) and P~1(x) both are polynomial matrices, then both
are unimodular.
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Example 2.1
A. We have the matrix

=~
I

(Zx x2+x+1)
2 x+1

det(4) = —2 # 0. Since det(4) is a nonzero real number, the matrix A4 is
unimodular.

B. We have the matrix

B:(xfl x;lc_l)

det(B) = 1 # 0. Since det(A4) is a nonzero real number, the matrix B is unimodular.

We study mostly systems which has rational transfer function. Let give the definition
of a rational matrix:

Definition 2.6

Let R[x] be the ring of polynomials with coefficients of R and R(x) is the bode of
rational functions over R[x]

n(x)

R(x) = {g()lg(x) = 57, n(x), d(x) € Rx], d(x) # 0} (2.3)

R(x) is called the body of rational functions.

Note: The elementary row and column operations where we can implement in a
rational matrix are the same as in Definition 2.2.

n)
dx)’

where n(x), d(x) are polynomials of x. The g(x) can be classified as follows [21]:

So, we have that every rational transfer function can be expressed as g(x) =

e g(x) proper & degd(x) = deg n(s) & g(o)= zero or nonzero constant.
e g(x) strictly proper & degd(x) > deg n(s) & g(o)=0.

e g(x) biproper & degd(x) = deg n(s) & g(o0)=nonzero constant..

e g(x)improper © degd(x) < deg n(s) & |g(xo)| = .
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Note: Improper rational transfer functions will amplify high-frequency noise, which
often exists in the real world; therefore improper rational functions rarely arise in
practice.

We introduce the concept of invariant polynomials of a matrix A(x). Since in the
theory of 2-D matrix we distinguish between two types of invariants; those associated
with isolated points of C2.

In 1-D theory, we have the factors and are described by Smith form. In 1-D case the
Smith form can be obtained by pre- and post- multiplication by unimodular matrices,
but this is impossible in 2-D case. We will see 2-D case later. Now let’s give the
definition of invariant polynomials.

Definition 2.7 [19]

The i — th determinantal divisor d;(x), i = 1, ... of the matrix A(x) is the greatest
common divisor of the i — th order minors of A(x). The zeros of d;(x) are called the
i — th determinantal zeros of A(x).

Note: The set of i — th order determinantal zeros of a polynomial matrix A(x) is
denoted n;{A(x)}.

Definition 2.8 [11]

We define dy(x) = 1 and we have

do(x) iz (X) — dq(x) ) ir(x) — dr_1(x) (24)

L) =20 400" a4y (x)

these are called invariant polynomials of the polynomial matrix A(x).

Note : The characterization “invariant” is due to the fact that polynomials
i;(x),i,(x), ..., i.(x) remain invariant beneath equivalence transformations of A(x).
This is also evident from (2.4)

Theorem 2.1 [13]

Let A(x) € R[x]™™ with rankA(x) = r, r = min {n,m}. Then A(x) is equivalent
with a diagonal matrix Sf(x) (x) € R[x]™™ where it has the form:

S50 (0) = diag[iy (x), iy (6), .., iy (£), 0y s ] (2.5)

47



’

“Notions of equivalence of multivariate polynomial matrices’

and it is called Smith form of A(x) in C where the polynomials i, (x), i, (x), ..., i, (x)
are not identically equal to zero and each of the polynomials i,(x), ..., i,.(x) is
divisible by the preceding. Moreover, it is assumed that the highest coefficient of all
the polynomials i, (x), ..., i,-(x) are equal to 1.

Proof. Among all the elements a;; (x) of A(x) that are not identically equal to zero

we choose one which has the least degree in x and by suitable permutations of the
rows and columns we make this element into a, (x). Then we find the quotients and
remainders of the polynomials a;, (x):

ai (x) = ag1(x) g1 (x) + 131 (%), a;;(x) = ag1(x)qq;(x) + 17 (x)
i=2,..,nj=2,.m)

If at least one of the remainders 7;; (x), 7 (x) (i = 2, ...,n,j = 2,..m), for example
r;(x), is not identically equal to zero, then by subtracting from the j — th column the
first column multiplied by g, ;(x), we replace a, ;(x) by the remainder r ;(x), which
is of smaller degree than a,, (x). Then we can again reduce the degree of the element

in the top left corner of the matrix by putting in its place an element of smaller degree
inr.

But if all the remainders r,1(x), ..., 1,1 (x); 112(x), ..., 1 (x) are identically equal to
zero, then by subtracting from the i — th row the first multiplied by q;;(x), (j =
2, ...m), we reduce our polynomial matrix to the form

ai (X) 0 0
(.) a22.(x) aer%(x) (26)
6 anz.(x) am,; (x)

If at least one of the elements a;;(x) (i = 2, ...,n,j = 2,...m) is not divisible without

remainder by a,, (x), then by adding to the first column that column which contains
such an element we arrive at the preceding case and can therefore again replace the
element a,,(x) by a polynomial of smaller degree.

Since the original element a,, (x) had a definite degree and since the process of
reducing this degree cannot be continued indefinitely, we must, after a finite number
of elementary operations, obtain a matrix of the form

i1(x) 0 0
0 by(x) = bam(%) (2.7)

0 b)) .. by ()
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in which all the elements b;;(x) are divisible without remainder by i; (x). If among
these elements b;;(x) there is one not identically equal to zero, then continuing the

same reduction process on the rows numbered 2, ..., n and the columns 2, ... m, we
reduce the matrix (2.7) to the form

il(X) 0 0 0

/ 0 ir(x) 0 0 \

| 0 0 3300 . @) |
6 0 Cng'(X) cm,;(x)

where i, (x) is divisible without remainder by i; (x) and all the polynomial ¢;;(x) are

divisible without remainder by i, (x) continuing the process further, we finally arrive
at a matrix of the form

: 0
0 0 0 0 0
\ 0 0 0 0 0

where the polynomials i, (x), i, (x), ..., i,-(x) are not identically equal to zero and each
is divisible by the preceding one.

By multiplying the first r rows by suitable nonzero numerical factors, we can arrange
that the highest coefficients of the polynomials i, (x), i,(x), ..., i,-(x) are equal to 1.0

Example 2.2

Consider the 1-D matrix

a0=( )

wheredy, =d; =1,d, =0and i; =1, i, = 0. Hence the Smith form of A is given
by :

SE@ =5 o)
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2.1.2 Coprimeness of 1-D poynomial matrices

Now we will see the notion of Coprimeness, which is one “only” in one dimension. In
more than one dimensions, this changes and the one become two or three different
notions as we will see in the next chapters

Definition 2.9 [21]

Two polynomials are said to be coprime if they have no common factor of degree at
least 1.

Definition 2.10 [22]
Let R(x),N(x), N(x) € R[x]9%4, D(x), D(x) € R[x]?*" be such that
N(x) = R(x)N(x) and D(x) = R(x)D(x)

R(x) is said to be a common left divisor of N(x) and D(x). R(x) is said to be a
greatest common left divisor (gcld) of N(x) and D(x) if every other common left
divisor L(x) of N(x) and D(x) is such that R(x) = L(x)M (x) for some M (x) €
R[x]7*1 .

It is important to say that, if the gcld of N(x) and D(x) are unimodular, then N (x)
and D (x) are said to be left coprime.

Note: Respectively, common right divisors and greatest common right divisor (gcrd)
of N(x)) € R[x]?*? and D(x)) € R[x]"*% can be studied analogously. So, we have

N(x) = N(x)R(x)and D(x) = D(x)R(x)

and R (x) is said to be a common right divisor of N(x) and D(x). Clearly, R(x) is a
gerd if every other common right divisor L(x) of N(x) and D(x) is such that R(x) =
M (x)L(x) for some (x)) € R[x]9*9 .

Moreover, N(x) and D(x) are said to be right coprime if the gcrd of N(x) and D(x)
are unimodular.

Computation of greatest common right divisors can be based on capabilities of
elementary row operations on a polynomial matrix. To set up this approach we
present a preliminary result.
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Theorem 2.2 [14]

Suppose P(x) isa p x r polynomial matrix and Q(x) is a r X r polynomial matrix. If
a unimodular (p + r) X (p + r) polynomial matrix U(x) and an r X r polynomial
matrix R (x) are such that

U(x) [g E’? R(x)] 2.8)

the R(x) isa gcrd of P(x) and Q (x).
Proof. Partition U(x) in the form

_ U1 (x) Upa(x)
Uz (%) Upa(x)

where Uy (x) isr X r and U,,(x) is p X p. Then the polynomial matrix U~1(x) can
be partitioned similarly as

(2.9)

-1 -1
Ol vl e

Using this notation to rewrite (2.12) gives

[Q(x)] _ [U_ln(x) U™l,(x) [R(X)]
P(x) Uh1(x) U (%)

That is,
Q) =U'1(0)RG),  P(x) = U1 (0)R(x)
Therefore R(x) is a common right divisor of P(x) and Q (x). But, from (2.8), (2.9),
R(x) = U1 (x)Q(x) + Uy, (x)P(x) (2.11)

so that if R, (x)is another common right divisor of P(x) and Q(x), say

Q(x) = Qu()Ry(x),  P(x) = R (x)R,(x)
then (2.11) gives

R(x) = [U11(x)Qq(x) + Upp ()P, (x)] R4 (%)

This show R, (x) also is a right divisor of R(x), and thus R(x) is a gcrd of P(x) and
Q(x).o
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To calculate greatest common right divisors using Theorem 2.2, we consider the three
types of elementary row operations which referred in Definition 2.2.

The below Theorem is the same as Theorem 2.2, but for greatest common left divisors
(gcld) of P(x) and Q(x).

Theorem 2.3 [14]

Suppose P(x) isa g X p polynomial matrix and Q (x) isa g X g polynomial matrix. If

a unimodular (q + p) X (q + p) polynomial matrix U(x) and an g X g polynomial
matrix L(x) are such that

[Q(x) P)]U) =[L(x) 0] (2.12)
the L(x) isa gcld of P(x) and Q(x).

Example 2.3

For

_(x*+x+1 x+1
Q) = ( x2 -3 2x—2)

Px)=(x+2 1)

calculation of a gcrd via Theorem 2.2 is a sequence of elementary row operations.

0(x) x2+x+1 x+1 x+2 1
M(x):[P(x) =| x2-3 2x = 2| r3| x*2-3 2x — 2
x+2 1 x’+x+1 x+1
x4+ 2 1
:’(x—Z)(x+2)+1 2x — 2
x—2)(x+2)+3 x+1
nor-G-pri|*x+2 1____ 11 x]
1 x| 'Tel2|(x+2 1
r3-ri—-(x-2ri1 3 3 3 3
1 X 1 1 X
2-r2—x+2)r1|0 —(x+2)|r3-=-r3(0 —(x+2)
3
3 3 1 1
1 1 1 1
NMer3f0 —(x+2)(Ir2-r2+r3jo —2]
0 X 0 x
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1 L N sm gzt 9
Fe==ol210 W or1-r2 |0 1
0 x 0 0

This calculation shows that a gcrd is the identity, and P(x) and Q (x) are right
coprime.

There are two different charactirizations of right coprimeness that are used in the
sequel.

Theorem 2.4 [14]

For a p x r polynomial matrix P(x) and a nonsingular r x r polynomial matrix Q (x),
the following statements are equivalent.

(i)  The polynomial matrices P(x) and Q(x) are right coprime.
(i)  There existan r X p polynomial matrix X (x) and an r X r polynomial matrix
Y (x) satisfying the x, called Bezout identity
Xx)P(x)+Y(x)Q(x) =1, (2.13)
(iii)  For every complex number x,

(2.14)

Proof. Beginning a demonstration that each claim implies the next, first we show that
(1) implies (ii). If P(x) and Q(x) are right coprime, then reduction to row Hermite
formasin (2.8) yields polynomial matrices U;,(x) and U;,(x) such that

U1 (0)Q(x) + Uy (x)P(x) = I,
and this has the form of (2.13).
To prove that (ii) implies (iii), write the condition (2.13) in the matrix form

e xel|pea] =

If x, isa complex number for which

Q(xo)
rank [ <r
P(x)

then we have a rank contradiction.

To show (iii) implies (i), suppose that (2.14) holds and R(x) is a common right
divisor of P(x) and Q(x). Then for some p x r polynomial matrix P (x) and some
r X r polynomial matrix Q(x).
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ggg] - [ggi]”@ (2.15)

If detR (x) is a polynomial of degree at least one and x, is a root of this polynomial,
then R(x,) is a complex matrix of less than full rank. Thus we obtain the
contradiction

rank [IQJ gzg < rankR(xy) <r

Therefore detR (x) is a nonzero constant, that is, R(x) is unimodular. This proves that
P(x) and Q(x) are right coprime.o

Respectively, for the case of left coprimeness, we have the next theorem:
Theorem 2.5 [14]

For a g X p polynomial matrix P(x) and a nonsingular g X g polynomial matrix
Q (x), the following statements are equivalent.

(i)  The polynomial matrices P(x) and Q(x) are left coprime.
(i)  There existan p x q polynomial matrix X(x) and an g X q polynomial matrix
Y (x) such that

P(x)X(x) + Q)Y (x) = I, (2.16)
(iii)  For every complex number x,
rank[Q(xo) P(xo)] =q (2.17)

Definition 2.11 [12]

A pair { P(x),R(x) } { P(x),Q(x) }) of polynomial matrices which has the same
number of columns (rows) is said to be relatively right prime if and only if their gcrd
(gcld) are unimodular matrices.

Note: If two polynomial matrices may be relatively right prime but not left prime and
vice versa. Above is given an example in which we can see that:

Example 2.4

Consider the polynomial matrices

o= (% 7

X X
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and
X —X
RO=( 1)

To find a gcrd G (x) of P(x) and R(x) we reduce the composite matrix

x? -1
P(x)] _|—x x?
R(x) X —X
0 1

to upper right triangular form .

It is clear that by multiplying the last row [0 1] of composite matrix by the
appropriate monomial and adding the resultant expressions to the remaining rows, all
other elements in the second column can be zeroed. The first column terms can also
be set equal to zero, with the exception of an x, by employing an analogous
procedure. Therefore, it is clear that

G =[5 3]

is a gcrd of P(x) and R(x).

To find a gcld G, (x) of P(x) and R(x) we reduce the composite matrix
2 _ _
[P(x) R(x)]= [x 21 ’6 1x] to lower left triangular form by adding the
—X X
third and fourth column of the composite matrix, we obtain the column vector [(1)]
which can be used to zero all other second row entries. The column vector [_01] is left

as the second column of the remaining matrix and can be used to zero the remaining
first row entries. It is therefore clear that the two dimensional identity matrix is a gcld
of P(x) and R(x).
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2.2 Equivalences in 1-D polynomial matrices

’

2.2.1 Equivalence relation

Initially, it is important for next chapters to understand better the notion of
equivalence. In this chapter, we will define when we have an equivalence relation.

Definition 2.12 [10]

Let F € {R,C} and F X F the set of ordered pairs of elements in F. A subset S of
F X F is called arelation on F and we write a~¢b if the pair (a, b) € S.

Definition 2.13 [10]
Acrelation S is called an equivalence relation if

1. a~gaforall ain F (reflexivity)
2. a~gb = b~gsa (symmetry)
3. a~sb and b~gc = a~gc (transitivity)

Whenever ~ is an equivalence relation on F, then
[a] = {b € F|b~a} (2.18)

is called the equivalence class of a with respect to ~, and the set {[a] |a € F} of all
equivalence classes is denoted by F /~.

Definition 2.14
If T is another set then a function f: S — T is called invariant element of R when
a~sb = f(a) = f(b) (2.19)

So, the f:S — T issninvariant element of R if all the elements b € T such that
(a, b) € R have the same image through f.

and complete invariant element of R when

a~sb & f(a) = f(b) (2.20)
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2.2.2 Unimodular Equivalence

Definition 2.15 [13]

Two polynomial matrices A(x) and B(x) are called 1)left-equivalent, 2)right
equivalent, 3)equivalent if one of them can be obtained from the other by means of
1)left-elementary, 2)right-elementary, 3)left and right elementary operations,
respectively.

Let B(x) be obtained from A(x) by means of the left-elementary operations
corresponding to S;, S5, ..., S,. Then

B(x) = Sp Sp—l ...SlA(x)
Denoting the product S, S,,_; ... S; by P(x), we write (2.22) in the form
B(x) = P(x)A(x) (2.21)

where P(x), like each of the matrices S;, S5, ..., S, has a constant nonzero
determinant.

In the case of right equivalence of the polynomial matrices A(x) and B (x) we shall
have instead of (2.21) the equation

B(x) = A(0)Q(x) (2.22)

And finally in the case of equivalence we have the equation:

B(x) = P(0)A(x)Q(x) (2.23)

Knowing relations (2.21), (2.22) and (2.23) we say again Definition 2.13, a bit
different:

Definition 2.16 [13]

Two rectangular matrices A(x) and B(x) are called 1)left-equivalent, 2)right
equivalent, 3)equivalent(unimodular equivalence) if
1) B(x) = P(x)A(x)

2) B(x) = A(x)Q(x)
3) B(x) = P(x)A(x)Q(x)
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respectively, where P(x) and Q (x) are polynomial square matrices with constant
nonzero determinants.

Definition 2.17 [15]

Two n x m polynomial matrices P, (x), P, (x) are said to be unimodular equivalent
(u.e) if there exist unimodular matrices L(x), R(x) such that

P,(x) = L(x)P; (x)R(x) (2.24)

Theorem 2.6

The relation generated by (2.24) is an equivalence relation.

Proof.

a)

b)

Reflexive law:
Let P, (x) € R[z]™™ . We have I,P,(x)I,, = P;(x), which is valid.

Symmetric law:

Let P, (x), P, (x)R[x]™™ polynomial matrices which are unimodular
equivalent so we have L(z) € R[x]™"™, R(z) € R[x]™ ™ such that

P,(x) = L(x)P; (x)R(x), then we will have L™ 1(x)P,(x) = P;(x)R(x)
L71(x)P,(x)R™1(x) = P;(x), where L™1(x),R™1(x) € R[x]™ ™ because they
are unimodular.

Transitive law:

Let P, (x), P,(x) € R[x]™™ unimodular equivalent matrices , so we have
L(z), € R[x]™"™ R(x) € R[x]™ ™ unimodular matrices such that

P, (x) = L(x)P; (x)R(x) (2.25)

and P,(x), P;(x) € R[x]™™ unimodular equivalent matrices , so we have
L'(x),€ R[x]™™ R'(x) € R[x]™™ unimodular matrices such that

P3(x) = L'(x)P,(x)R' (x) (2.26)
from (2.26), we have

L ' x0)Py(x) = P,(0)R' (x) © L' ()P ()R ' (x) = P,(x)  (2.27)

(22525 LOP ()R = L7 (0P, (IR ™ ()
& P(x)R(x) = L ()L (x) P ()R~ (%)
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& P(x) =L )L ()P ()R (x)R™1(x)
© Py(x) = [L()L ()] Ps ()[R ()R] !

where [L(x)L'(x)]"* and [R'(x)R(x)]"! € R[x]™" because they are
unimodular.

Consequently, unimodular equivalence is an equivalence relation.0

Note: Invariant polynomials and the determinantal divisors of a polynomial matrix
P(x) € R[z]™™ are defined uniquely, so the Smith form in C of a polynomial matrix
is unique. Thus, we can define as an algebraic structure of a polynomial matrix in C
the structure of the Smith form in C of this matrix, which its characteristics are zeros
of this polynomial matrix.

It will be proved that the unimodular equivalence in C between two polynomial
matrices P; (x) and P,(x) € R[z]™™ has the property retain:

1. the Smith formin C of P, (x) and P,(x)
2. the invariant polynomials of P, (x) and P, (x)
3. the determinantal divisors of P; (x) and P, (x).

Proof.

Let P, (x) and P,(x) be two equivalent polynomial matrices. Then they are obtained
from one another by the means of elementary operations. But an easy verification
shows immediately that the elementary operations change neither the rank of P, (x)
nor the polynomials D, (x), D,(x), ..., D,(x). For when we apply to the identity (2.24)
the formula that expresses a minor of a product of matrices by the minors of the
factors, we obtain for an arbitrary minor of P, (x) the expression

Ji J2 e p
Pz( ;X
ki ky . ky )
_ i J2 e jp) (0{1 Xz - an) (31 Bz - Bp
Z L<a1 a; .. G i B Bz - ,Bp'x R ki ky .. ky

1=a;<a;<--<apsm
1=f,1<f<<Ppsm

(p = 1,2,...,min (m,n)).

Hence it follows that all minors of order r or greater of the matrix P, (x), is divisible
by D,(x) (p = 1,2, ..., min (m, n)). But the matrices P; (x) and P,(x) can exchange
roles.

Therefore r < r* and D, (x) is divisible by D,"(x)(p = 1,2, ..., min (m, n)).

Hence
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r <r*D;"(x) = D;(x),D,"(x) = D,(x), ..., D,*(x) = D,.(x).

Since elementary operations do not change the polynomials
D;"(x),D,*(x), ..., D" (x), they also leave the polynomials i, (x), i, (x), ..., i, (x)
unchanged.

Thus, the polynomials i; (x), i, (x), ..., i,-(x) remain invariant on transition from one
matrix to another equivalent one.

If the polynomial matrix has the canonical diagonal form (Smith form), then it is easy
to see that for this matrix

D;(x) = a;(x),D,(x) = a;(x)a,(x), ..., D,.(x) = a; (x)a,(x), ..., a,(x).

But then, the diagonal polynomial in canonical diagonal form coincide with the
invariant polynomials

i (x) = a;(x), i, (x) = ay(x), ..., i (x) = a,(x).

Here i; (x), i,(x), ..., i,-(x) are at the same time the invariant polynomials of the
original matrix P, (x), because it is equivalent to canonical diagonal form.
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2.2.3 Equivalence of Binomials

We consider two square matrices A(x) and B(x) of order n in which all the elements
are of degree not higher than 1 in x. These polynomials matrices may be represented
in the form of matrix binomials:

We shall assume that these binomials are of degree 1 and regular, i.e. that |A,| # 0,
|Bo| # 0.

Below is given a criterion for the equivalence of such binomials:
Theorem 2.7 [13]

If two regular binomials of the first degree Ayx + A; and Byx + B, are equivalent,
then they are strictly equivalent, i.e., in the identity

Box + By = P(x)(Apx + A1) Q(x) (2.29)

the matrices P (x) and Q (x)- with constant non-zero determinants- can be replaced by
constant non-singular matrices P and Q:

Proof. Since the determinant of P(x) does not depend on x and is different from zero,
the inverse matrix M (x) = P~1(x) is also a polynomial matrix. With the help of this
matrix we write (2.29) in the form

M(x)(Box + By) = (Aox + A1)Q (%) (2.31)

Regarding M (x) and Q(x) as matrix polynomials, we divide M (x) on the left by
Apx + Ay and Q(x) on the right by Byx + B;:

M(x) = (Agx +A)Sx) + M (2.32)
Q(x) =T(x)(Box + By) +Q (2.33)

here M and Q are constant square matrices (independent of x) of order n. We
substitute these expressions for M (x) and Q (x) in (2.31). After a few small
transformations, we obtain

(Agx + ADIT(x) = S(G)](Byx + By) = M(Box + By) — (Agx + A4)Q. (2.34)
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The difference in the brackets must be identically equal to zero; for otherwise the
product on the left-hand side of (2.34) would be of degree > 2, while the polynomial
on the right-hand side of the equation is of degree not higher than 1. Therefore

S(x) =T(x) (2.35)
But then we obtain from (2.34):
M(Byx + B;) = (Agx + A;)Q (2.36)

We shall now show that M is a non-singular matrix. For this purpose we divide P (x)
on the left by Byx + B;:

P(x) = (Box + BDU(x) + P (2.37)
From (2.31), (2.32) and (2.37) we deduce:
E =M(x)P(x) = M(x)(Byx + By)U(x) + M (x)P
= (Agx + A1)Q()U(x) + (Agx + A)S(x)P + MP
= (Apx + AD[Q(X)U(x) + S(x)P] + MP. (2.38)

Since the last term of this chain of equations must be of degree zero in x (because it is
equal to E), the expression in brackets must be identically equal to zero. But then
from (2.38)

MP =E. (2.39)
sothat [M| # 0and M~1 = P,
Multiplying both sides of (2.36) on the left by P we obtain:
Box 4+ B; = P(Agx + A1)Q.

The fact that P is non-singular follows from (2.39). That P and Q are non-singular
also follows directly from (2.30), since this identity implies

BO = PA()Q
and therefore
|P[|AolIQ] = |Bo| # 0.

This completes the proof of the theorem.o
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2.2.4 Extended Unimodular Equivalence

Firstly, we will see an important lemma, which will help us in the next theorem.

Lemma 2.1 [18]
Let the partitioned square polynomial matrix

(A(x) B (x))
C(x) D(x)
be unimodular, then

(i) A(x), B(x) (respectively C(x), D(x)) are relatively left prime.
(i)  A(x), C(x) (respectively B(x), D(x)) are relatively right prime.

Definition 2.18 [18]

Let P(m, ) be the class of (r + m) x (r + 1) polynomial matrices where [ and m are
fixed integers and r ranges over all integers which are greater than max (—m, —1).
Let P(x), P,(x) € P(m,l) and consider the relation generated by

M(x)P(x) = P,(x)N(x) (2.40)

where P; and M are relatively left prime and P and N are relatively right prime.

Theorem 2.8 [18]
The relation generated by (2.40) is an equivalence relation.

Proof.
(1)  Reflexive law:

In the first place the relation is reflexive, since (2.40) holds for P = P; with M
and N identity matrices of the appropriate sizes. M and N thus have the correct
relative primeness properties.

(i)  Symmetric law:
Secondly, for symmetry suppose, P and P; satisfy (2.40), which may be
written as

(M, Py) [_PN] =0 (2.41)

Since M, P are relatively left prime there exist polynomial matrices X; and X,
(which are themselves relatively right prime), such that
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X
M, P[] = from 242)
Similarly, there exist relatively left prime polynomial matrices X5, X, such that
5 P
K5 X [ y] = (2.43)

Consider now the matrix pair X3, X, defined by

(. X) = (o, X [lpomer =[] 2] (240
Then

cx[B] =@ [ B]- @ ol me 5] @)

= I.,; ,from (2.43) and (2.41)
Also,

(X3,X4) [))2] = ()?3' j(4) ;(ﬂ - (X3: ’X4) ))2] (M Py) ))2] (2.46)

= 0, from (2.42)

The relations (2.41), (2.42), (2.45) and (2.46) may be assembled as:

[ AA R A B

But the two matrices on the left-hand side of (2.47) are both square and of the
same dimensions. Consequently the one is the inverse of the other. Also, since
both are polynomial, they are both unimodular. By the properties of an inverse

[X1 ]M P1] [r+m ]
X2 X3 T'1+l

From the (1,2) block equations we obtain:

(X1, P) [;ﬂ =0 (2.48)
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Also by Lemma 2.1 X; and X, have the correct co-primeness properties as
required by the relation of Lemma 2.1, since

[Xl PHM Pl]
X, -N|'lx; x,

are unimodular. Thus the symmetry of (2.40) is proved.

Transitive law:
Finally for the transitivity of (2.40) suppose:

Ml\ﬁz - 2%, } (2.49)
with the usual relative primeness properties holding.
From the first of these equations,
M'MP = M'P,N
and substituting from the second gives
M'MP = P,N'N (2.50)

It must now be shown that the required relative primeness conditions are met.
From the relative primeness properties associated with (3.36), there exist
polynomial matrices Q;, Q,, Q, Q, such that

MQ; + PQ; = I ym (2.51)
M'Q3 + P,Q4 = Lyom (2.52)
From (2.51),
M'MQ, + M'P,Q, =M’
ie.

M'MQ, + P,N'Q, = M', from (2.49)
Post-multiplying by Q5 gives:
M'MQ,Q5 + P,N'Q,Q3 = M' Q3
= Iy, ym — P2Q4, from (2.52)

M'MQ,Q5 + P,(N'Q20Q5 — Q) = Ly (2.53)
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(2.53) thus proves that M'M and P, are relative left prime. Similarly P and N'N are
relative right prime, and transitivity follows from (2.50). This completes the proof of
the theorem.

Note: The equivalence relation generated by equation (2.40) will be called extended
unimodular equivalence (eue). Note that the definition of eue contains as a special
case the usual unimodular equivalence ue of polynomial matrices. Thus we have:

Proposition 2.1 [18]
Two polynomial matrices of the same dimensions that are ue are also eue.
As a consequence of this result and Theorem 2.8 we have

Proposition 2.2 [18]
If two polynomial matrices in P (m, [) are eue then so are their respective Smith form.

Proof. Suppose P(x), P, (x) € P(m,l) are eue, then
MP = P,N (2.54)
with the usual relative primeness conditions holding.

Let Sp(xy (%) and Sp, () (x) denote the respective Smith forms of P(x) and P; (x)
respectively, then

P = LSP(X)R7 Pl = Ll'SPl(x)Rl (255)

for unimodular matrices L, L4, R, R;.
Using (2.55) in (2.54) gives

MLSP(x)R = L15P1(x)R1N

Ly *MLSpyy = Sp,yR1NR; ™! (2.56)

Now L, *ML and Sp,(x) are relative left prime since

_ _1[L 0
(L1 1ML;SP1(x)) =L 1[0 R1—1]
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with the first and third matrices on the right-hand side being unimodular, and M, P,
are relative left prime. Similarly, Sp(,) and R{NR; ! are relative right prime, and so
(2.56) proves the proposition.c
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2.3 2-D Polynomial Matrices

In this chapter, we will see what it happens in 2-D polynomial matrices, where we
have polynomials with two indeterminates. Are the notions the same as in one
indeterminate? If they aren’t, what’s different?

In 1- D theory, we saw that elementary matrices play a crucial role and they are
subclass of unimodular matrices over a ring unimodular. Unimodular matrices can be
formed as a product of elementary matrices. In this chapter, we will study systems
with more than one variables, where not all unimodular matrices can be formed as a
product of elementary matrices. This happens due to the absence of a division
algorithmin R[xq, x5, ..., x,,].

The existence of a division algorithm for Euclidean polynomial rings forms the basis
for the algorithmic derivation of many canonical forms and solution techniques at the
heart of 1-D polynomial equations. In case of n > 2 progress is possible by noting
that any polynomial ring can be regarded as a subring of a larger ring with a division
algorithm. The exact mechanism is to favor one of the indeterminates and consider
elements of the ring to be polynomial in this indeterminate with coefficients rational
in the others. If, for example, x,, is the favored indeterminate the resulting ring is
denoted R(xq, X2, .., Xp—1) [%n].

Consider the 2-D system matrix in the general form

T(x,x) U (xlrxz)) (2.57)

Peox) = (Lo i

where T'(xq,x,), U(xq,x5), V(xq1,x5) and W (x4, x,) are respectively r; X r,, r; X [,
m X 1, and m X [ polynomial, where r, < r, +land r, < r; + m.

Let P(x,,x,) bean m x [ polynomial matrix, then P(x,,x,) can be written as:
P(x1,%3) = Py(x3) + Py (x)xq + -+ + Py (x3) x4 (2.58)

where P;(x,),i = 0,1, ...,q are m x [ polynomial matrices over R[x,] and

Py(xy) # 0 (2.59)
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Obviously, the matrix P (x;, x,) can be expressed in a similar fashion in terms of
powers of x,, i.e.

P(x1,x2) = Qo(x1) + Q1 (x)xz + - + Qp (x1)x,P (2.60)

where Q;(x,),i = 0,1,...,p are m x [ polynomial matrices over R[x,] and

Qp(x1) #0 (2.61)

Such as in Definition 2.2 for 1-D case, now we will present 2-D elementary row
(respectively column) over the ring of two-variable polynomials, as we said, it is not
Euclidean and there is not the direct dependence between the equivalence of two-
variable monomial matrices.

Definition 2.19 [25]

The following three elementary row (column) operations on the polynomial matrix
P(x,,x,) with coefficients in R[x,, x,] are defined
(i)  the multiplication of the i — th row (respectively column) by the scalar ¢ € R
(if)  the addition to the i — th row (respectively column) of the j — th row
(respectively column) multiplied by the polynomial b (x4, x;)
(iii)  theinterchange of the i — th and row j — th (respectively column)
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2.3.1 Notions of Coprimeness

In case of 2-D polynomial matrices are two distinct definitions, minor and zero
coprimeness and in the case of n > 3 we have one more different definition, factor
coprimeness. In the case of 2-D polynomial matrices the notions minor and factor
coprimeness are identical. In this thesis, we will examine only the case with two
indeterminates.

Definition 2.20 [23]

The matrices T, U in (2.57) are said to be minor left coprime (mlc) in case the r X r
minors of the compound matrix [T U] have no non-trivial common factors in
R[x4,x5]. Similarly, the matrices T,V in (2.57) are said to be minor right coprime

T
(mrc) in case the r X r minors of the compound matrix [ TvT] have no non-trivial

common factors in R[x, x5].

Lemma 2.2 [23]
The following statements are equivalent

(i) T,Uaremlc
(i)  Any polynomial factorization [T U] = A[T* U*] with A being a square
matrix, implies that A is unimodular over R[x4,x,].

Definition 2.21 [23]

The matrices T, U in (3.1) are said to be zero left coprime (zIc) in case the compound
matrix [T U] has rank r for r for all values of the indeterminate pair (x, x,) over
C2. Similarly the matrices T, V in (3.1) are said to be zero right coprime (zrc) in case

T
the compound matrix [ TvT] has rank r for all values of the indeterminate pair

(x4, x,) over C2.

In 1-D system theory a polynomial matrix with rank degeneracies can be viewed as
the product of two polynomial matrices, one with full rank and the other containing
the rank degeneracies. Consider now a n X m 2-D polynomial matrix A(x) with

n < m. Then there are three different notions of relative primeness for this matrix.
These are termed minor and zero coprimeness and are defined as follows:
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Definition 2.22 [16]

Let A(x) and B(x) denote, respectively, an m x g and m x [ polynomial matrix,
q+1=m=1,and let

C(x) =[A(x) B@)]
Then, the pair A(x), B(x) is said to be

(2.62)

1. zero left coprime (zlc) if there exists no 2-tuple x = (x4, x,) which is a zero of
all the m x m minors of C(x),

2. minor left coprime (mlc) if these minors are relative prime, and

3. factor left coprime (flc) if in any polynomial decomposition C(x) =
C;(x)C,(x) in which C; (x) is square, C;(x) is necessarily elementary.

Note: In dual fashion, A(x), B(x) are zero right coprime (zrc), etc if the matrix
transposed pair AT (x), BT (x) is zero left coprime.

P Transpose is a matrix where it has as columns the rows of matrix A(x) and as rows
the columns of A(x), for example, we have the matrix

a;1(x)  agz(x) A1m(x)
AQx) = | @210 azz(x) azm(x)
() () o ()
and its transpose is the matrix
aj1(x)  az(x) An1(x)
AT (x) = aiz(x)  azz(x) An2 (%)
U@ Q@) . G ()

Example 2.5

This example demonstrates the different types of coprimeness for polynomial

matrices over the polynomial ring R[x, x,].

(i)  The greatest common divisor of the second order minors of the compound

matrix [4; B;] formed from the polynomial matrices
X 0 X 0
Al [xl'xz] = [01 xz] ) Bl[xlﬂxz] = 02 xl]
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is equal to 1, we have six different second order minors and these are

0 0
"Xy x4

0 x,
x, 0

x, 0
0 x;

x; O
0 x,

X1 X3
) 0 0 )

x; O
0 x;

) )

However, for the values x; = x, = x5 = 0 the compound matrix loses rank,
and therefore A; and B, are examples of minor left coprime matrices.

(ii)  Finally the compound [4; B,] formed from the polynomial matrices

2 2
1+ x1x5 x4 X1 0

Aylxq, x5] :[ xzz 1]’ B,[xy,x,] = 1+x, x

has the second order minor

’1+x1x§ x| _

2
X5 1

which is equal to 1, and therefore A, and B, are examples of zero left
coprime matrices.

Note : Let A = A[x1,x,] denote an m X m polynomial matrix in the 2 variables x;,

i =1,2,andlet d(x) = detA(x) # 0. Suppose that d(x) = d; (x)d,(x) where

d, (x) and d,(x) are both polynomials. Then, for n > 3 it is not always possible to
find two polynomial m x m matrices A;(x) and A, (x) such that detA;(x) = d;(x),
i =1,2and

A(x) = A; (x) Az (%) (2.63)

Theorem 2.9 [16]

For n = 1 the three definitions are equivalent, i.e. zlc = mlc = flc . Forn = 2,
zlc # mlc = flc and for n = 3, zlc £ mlc % flc . Always zlc — mlc — flc .

Proof. That the three definitions are equivalent for n = 1 is well known
[Rosenbrock,1970] and is directly attributable to the fact that every ideal of
polynomials in one variable is principal [Vander Waerden, 1950]. Since the
polynomials A(x) = x; and B(x) = x, possess to common zero x = (0,0) but are ely
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prime, the zlc and mlc concepts differ for n > 2. Nevertheless, it is proved in
Theorem 3.3 that for n = 2, a pair A(x), B(x) is mlc if and only if it is flc.

The proof of n = 3 isin Youla and Gnavi [16] .

Furthermore, it is obvious that for all n > 1, zlc — mlc — flc.o

Theorem 2.10 [16]

1. The m x g and m x [ polynomial matrices A(x) and B(x), q + l > m + [ are
zlc if and only if there exist two polynomial matrices X (x) and Y (x) such that

AxX)X(x) + B(x)Y(x) =1, (2.64)

2. They are micif and only if for every i = 1, ..., n, there exist polynomial
matrices X;(x) and Y;(x) such that

AQ)X;(x) + B(0)Y;(x) = ¥, ()] (2.65)

where 1; (x) is a nontrivial scalar polynomial independent of the variable x;.
Moreover, if A(x) and B(x) are real, X(x), Y (x) and X;(x),Y; (x), ¥; (x)
i =1,...,n, can always be constructed.

Before the Proof of the Theorem 3.2, we need the Cauchy-Binet theorem[13]:

Suppose that a square matrix C = (¢;;) is the product of two rectangular matrices
A = (ay) and B = (by;) of dimension n X m and m X n, respectively:

€11 - Cin i1 - Qim\ /by .. by
C21 CZTL _ a21 azm b21 bZTl (2 66)
Cn1 - Can An1 - Anm bpi - bmn
ie.,
— m ..
Cij = Xk=1Qikbx; (iL,j=1,..,n) (2.67)

We shall establish the important Binet-Cauchy formula, which expresses the
determinant |C| in terms of the minors of A and B:

73



“Notions of equivalence of multivariate polynomial matrices”

C11 o Cin a1k1 alkn bk11 bkln

Crq Con _ Z aZkl aan bkzl bkzn
. ° H - 1Sk1<k2<~~~<kn5m ‘. . : . .

\(2.68)

Ch1 = Cnn nky =+ Ankn/ \bg,1 - Dbr,n

According to this formula the determinant of C is the sum of the products of all
possible minors of the maximal (n — th) order of A into the corresponding minors of
the same order of B.

The Binet-Cauchy formula enables us, in the general case also, to express the minors
of the product of two rectangular matrices in terms of the minors of the factors. Let

A= (ay), B=(bj),C=(c)

and C = AB.

We consider an arbitrary minor of C:

i iy ip) o _
C(. . . 1<ii<i, < +<i,<n
Ji J2 e Jp (=i <i P

Sh<j2<<jp=q,;
p<nandp <q)
The matrix formed from the elements of this minor is the product of two rectangular
matrices

aill ailm b1j1 blp
ai.zl ai?m | b2j1 szp

. ‘. . ) . |
i1 o Aipm \bmjl bmjp/

Therefore, by applying the Binet-Cauchy formula, we obtain:

ip Iy .. ip> <i1 ip . ip> <k1 ky, .. kp)
C ( . DR ckn<mA B\ . . .
]1 ]2 ]p Zl_k1<k2< <kpsm kl kz kp ]1 ]2 ]p
(2.69)
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The rank of the product of two rectangular matrices does not exceed the rank of either
factor.

Note: If C = AB and p(A), p(B), p(C) are the ranks of 4, B, C then
p(C) < min ( p(A),p(B))

Proof. (Theorem 2.10)

1. Clearly, (2.64) guarantees that rankC = rank[A B = m] for all x and this
implies that no x = (x4, x5, ..., x,,) isa common zero of all the m X m minors
of C(x). Thus (2.64) is sufficient for zlc. To prove necessity we employ a
novel technique which succeeds in isolating each individual m X m minor of
C(x).
Let the pair A(x), B(x)be zlcand let 4; ; ; (x) denote the m x m minor of
C(x) formed with the given m rows and the m columns numbered

i1,13, ..., L. From the Definition of zlc, these C,‘ll” polynomials are devoid of
any common zeros and invoking a classical result due to Hilbert [\Vander
Waerden, 1950], there exist polynomials a; ;, ; (x) such that

1=20) %y iy,in, A iy, i (X) (2.70)

In addition, the a’s can all be chosen real if all the A’s are real.

Pick K to be any (q + I) x m real constant matrix whose m X m minors
P PR : :

K (1 5 m) are all nonzero, introduce g + [ extra independent

variables, A, 43, ..., Ag4; and let

A(x) = diag[Ay, Az, ..., Ag4] (2.71)
The polynomial matrix
D(x,A) = C(x)A(x)K (2.72)

is m X m and from Cauchy-Binet theorem,
Alx, 1) = detdA(x, 1) =

ii iy . 1
Z(l) Ailliz "'AiﬂAil,iz....,im(x) K (11 22 TTTrll) (273)

Thus for every one of the —tuples (i) = iy, iz, .., im,
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o . il iz lm — 6 A(x,/'L)
All,lz,...,lm(x)K(l 2 . m) 5/’1i15/1i2...5/1im|(@=0

(2.74)
Let D, (x, 1) denote the m x m polynomial matrix adjugate to D(x, 1). Since

A(x, DI, = D(x,1)D,(x, 1) (2.75)
multiplication of both sides of (2.73) on the right with D, (x, 1) yields

AGe, Dy = CO)AMR)KD,(x, 1) (2.76)
IIn view of , (2.74), (2.76) permits the identifications

Ais i Oy = C(X)Z; 4, i (X) (2.77)

where for all (i),

1 0 m(/l (D)KDg(x,2))

i1 iz R
12 . ;nn) 0 A, 0 4i,..0 Ay,

Ziy g i (%) = P =0 (2.78)

is (g + 1) x m and polynomial. Finally, by combining (2.66) and (2.77) we
reach the desired result (2.64),

Cx)Z(x) =Ax)X(x) + B(x)Y(x) =1, (2.80)
where

Z(x) = Xy Ay iy, i ) Zi iy, i (X) = [);gg (2.81)

An examination of the above procedure reveals that Z(x) is always real if
C(x) isreal.

. Suppose that the pair A(x), B(x) satisfies (2.65) for every i = 1, ...,n. Then,
by Cauchy-Binet, the gcd of the m x m minors of C = [4  B] must divide
every ; (x). Since y; (x) is nontrivial and independent of x;, i = 1, ..., n, this
ged must be a nonzero constant and the €™ 4’s are therefore relative prime.
Hence, A(x) and B(x) are mlc. The necessity of (2.65) is also easily
established with the aid of (2.77).

By definition, A(x) and B(x) are mlc if the A’s form a relatively prime set of
polynomials. But then, according to another classical result [\VVander Waerden,
1950], for every i = 1, ..., n there exist polynomial a; ;, ; (x;i) such that

20) By i, iy 6 DA iy i () = (x) (2.82)

where ; (x) is nontriavial and independent of x;.
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As before, the a’s can be chosen real if all A’s are real. Thus combining (2.77)

and (2.82),

C(x)Z;(x) = Ax)X;(x) + B(x)Y;(x) = ¢¥;(x) ]y, (2.83)
where

Zi(x) = X)) Qi iy, iy G DZ i, i (X) = [)1%((9)3 (2.84)0

As we said before, for case n=2 notions minor coprimeness and factor coprimeness
are identically. Let’s see why this happens with the following Theorem:

Theorem 2.11 [16]

For n = 2, a polynomial pair A(x), B(x) is minor left coprime if and only ifitis
factor left coprime.

Proof. Let the pair A(x), B(x) be mlc but not flc. Then, C(x) = [A(x) B(x)]
admits a polynomial decomposition C(x) = C;(x)C,(x) where in C;(x) is square and
non elementary. Since mlc implies that normal rank C(x) = m, detC;(x) isanon
constant polynomial which divides all the m x m minors of C(x), a contradiction.oo

A set of polynomials a;(x,),1 < i < n, in one indeterminate are said to be factor
coprime provided there is no value x; € C such that they are not identically zero. If
such a value exists then x; — x7 is a factor of all the polynomials in the set. In the
case of n > 2, this no longer holds and hence it is a necessary to distinguish between
zero coprimeness and factor coprimeness. The following fundamental results, termed
Hilbert’s Nullstellensatz.

Example 2.6
Consider the 2-D polynomial matrices given in part (i) of Example 2.5

0
1 ]; B1[x1'x2] =

X 0
A1[x1;x2] = [0 X, 2 ]

0 x

It can be easily verified that the following identities hold

FI | A RS P vl R P
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x1 O xl 0 [xz O][O 0]_ 21 0
0 x3“0 0]+ 0 x]10 x, =% [0 1

X4 O][xz(x2+1) 0]+x2 O”xl(1+x2) 0 ]
0 x, 0 0 0 x 0 x1+ xy

= x1%2(1 + x3) [1 O]

0 1

which demonstrate the Bezout identities for minor left coprimeness. Now consider the
two polynomial matrices given in part (ii) of example 2.5

14+ x5 x, B,lxy,x,] = x? 0

Az[xl,x2]=[ x5 11’ 1+x, x

It can be easily verified that the following identities hold

0 0
[1+x1x§ xl][ 1 o]+ x2 0 1 :[1 0]
x2 11l=x% of "[14+x, x][0 x_1 0 1

which demonstrates the Bezout identity for zero left coprimeness.
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2.3.2 Invariant Polynomials and Zeros

In 2-D matrix theory we distinguish between two types of invariants; those associated
with factors of the matrix and those associated with isolated points of C2. The factors
have counterparts in 1-D theory and are described by the Smith form. In 1-D the
Smith form can be obtained by pre- and post-multiplication by unimodular matrices,
but in 2-D this is not possible and we adopt the alternative (and in 1-D equivalent)
definition.

Definition 2.23 [24]
An m X n polynomial matrix P(x,, x,) has Smith form:

S(xllxz) = (Q(xpxz) Om,n—m); n>m

S(xq,x2) = Q(xy,%2), n=m (2.85)
S(xy,x2) = (Q()(::ll_,nxj))' n<m

where Q (x4, x,) is a diagonal matrix having the invariant polynomials €; (x,, x,) as its
non-zero elements. If the rank of P is r then there are r non-zero elements occupying
the leading r positions and the remaining invariant polynomials are zero. Each

(x4, x,) divides €;,,(xq,x,),i =1, ...,7. The & (xq, x,) are given by

Diaxa) g,y (2.86)

& (xl’ xz) - Di_q(x1,x2)’

where Dy(x4,x,) = 1 and D;(x,, x5) is the gcd of minors of order i in P(xq,x5).

Invariant polynomials are unique modulo a multiplicative constant, each of which, in
2-D, correspond to a matrix factor of P(x,, x,). Thus invariant polynomials can be
factored out of the matrix. Invariant polynomials can be decomposed into irreducible
factors, which we term invariant factors, each having an associated multiplicity and a
number of degrees.

Like we saw, for many reasons it is frequently necessary in systems analysis to
transform a polynomial matrix to a simpler but equivalent form. One basic
equivalence transformation in the 2-D context is zero coprime equivalent. But, before
the Definition of zero coprime equivalent, firstly, we have to say something else[19]:

There are various zero structures one can define for P(x), but all definitions are
based on the property that zero is associated with a renk reduction of the matrix.
The i — th determinantal divisor is unique module a multiplicative constant ¢ €
C/{0} and so this definition is the direct extension of the 1-D case where it
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characterizes exactly the situation in which a 1-D matrix loses rank. The simple
example P(x) = (x,,x,) reveals the inadequacy of this definition for general n-D
polynomial matrices. This matrix has d, (x) = 1 and so has no determinantal zeros,
nevertheless P (x) loses rank for x; = x, = 0. We required a more encompassing
definition.

For any p X g n-D polynomial matrix P(x), let m; ; denote an individual i X i minor
. _ p! q! .

of P(x) wherej =1, ...,k; = (i!(p_l,)!) (i!(q_i)!). Denote the ideal generated by the

i X i minors of P(x) by Il.[P] and write Il.[P] = dl-]i[P], where ]l.[P] is the ideal generated

by the set of polynomials which result from the i x i minors of P(x) when the i — th

determinantal divisor d;(x) is removed. Clearly each ideal ]l.[P] is generated by a set of
factor coprime polynomials. This set, however, may not be additionally zero coprime
which is the distinctive feature of n-D (n > 1), and the situation which the previous
simple example P(x) = (x4, x,) illustrates. These considerations lead us to the
following definitions which find their origin in Zerz (1996).

Definition 2.24 [19]
The i — th order invariant zeros, i = 1, ...,r, of a polynomial matrix P(x), are the

elements of V(Il.[P]), the variety defined by the ideal Ii[P] and they are defined to be

Zi{P(x)} = ni{P()} — ni—1{P(x)}
where n;{P(x)} is the set of i — th order determinantal zeros of P(x) and no{P(x)} is
the empty set.
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2.4 Equivalences in 2-D polynomial matrices

In this chapter, we will see four different equivalences in 2-D polynomial matrices
and some more results which arise.

Definition 2.25 [24]

Py (x4, %), Py (xq1,%5) € P(xq,x,)™< are EO-EQUIVALENT (eoe) if one can be
obtained from the other by a sequence of elementary row and column operations over
:P(xlfo)-

Definition 2.26 [24]
P, (%1, %), Py (x4, x5) are UNIMODULAR EQUIVALENT (ue) if 3 unimodular
matrices L(x,, x5), R(xy,x,) such that

Py (xq,x2) = L(xq, x3) Py (x4, x2) R(x1, x7) (2.87)

Elementary operations are the basis for computational developments. If E; (x;, x5)
(resp. Ex(x4,x5)) is the result of performing the elementary row (resp. column)
operations on I,,, (resp. I;) eoe can be written as

P, (x1, xz) =E; (x1, xz)P1 (x1. xz)ER (xp xz) (2.88)

E; (x1,x,), Egr(xq,x,) of (2.88) are called ELEMENTARY. It is clear that elementary
matrices are unimodular thus eoe implies ue.

Note: However unimodular matrices are not necessarily elementary, and so the
converse is false.

Definition 2.27 [19]

Denote the class of (s + p) X (s + q) 2-D polynomial matrices by P (p, q), where
s > —min(p, q), P, (x4, x5), P,(x1,x,) € P(p, q) are said to be ZERO COPRIME
EQUIVALENT (zce) in case 3 polynomial matrices M (x4, x,), N(xq,x,) of
appropriate dimensions such that

M (xq,x5)P,(x1,x5) = Py (xq,x5)N(xq1,x5) (2.89)

with M, P; zlcand P,, N zrc.
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Theorem 2.12 [27]
The relation (2.89) is an equivalence relation.

Proof. Let P; (xq,x,)P*?and P,(xq,x,)™ two polynomial matrices (withp X q =
r X s)and let M(xq,x,)and N (x4, x,) polynomial matrices as to:

with M, P; zlcand P,, N zrc.

i.  Reflexivity

Let P, =P,in (2.90). Then p=randq =s.
IfN =1, and M = [, then I.P, = P;I, anddetl = 1.

I,., P, zero left coprime and P,, I, zero right coprime.

ii.  Transitivity

We suppose that

MP, = PN (2.91)

The 2.91 = M(MP,) = M(P,N) = P;NN.

So we need to prove that M, M, P, are zero left coprime. Similarly we will prove that
N, N, P, are zero right coprime.

iii.  Symmetry
7 7 (FP2) =
@ X(3)=1 (2.93)
o P(y) =1, (2.99)
From (2.90)
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PZ —
™ P)([2)=0 (2.95)

Then

M P\ (X, Pz)_(lr 0)

7 ) )= (2.96)
where | =YX, + XY,
now if we multiply from the left the (2.96) with
(f] 2) we have:

M PN\(X, P\ _(I, 0

by ) 2= 1) (2.97)

A B
where X; =X; —JPjandY, =Y, — /M

Because A 4q)x(p+s) aNd B(p4s)x(r+q) SQUare matrices of the same size, which
between them are inverse polynomials, they have to be invertible and to give

b W& =05 7)) e

B A

and the equations
X,M +P,Y, =1, (2.99)
X,P, +P,X; =0
Y,P, + —NY; = 0

So from (2.98) X,, P, are zero left coprime and from (2.99) —X;, P, are zero right
coprime.

So it is symmetric.o
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Theorem 2.13 [24]
The two polynomial matrices P;, P,, of Definition 2.27 are ue if-f they are zce.

Proof. (zce = ue) The Bezout identities for left and right zero coprimeness are
Si1Z+PW=1,, XS, +YP, =1, (2.100)

Hence we can write

GUEDGH e

where ] = —XW + YZ. Postmultiplying (2.91) by the inverse of the matrix on the
right hand side gives

X Y\ /[(-S, W)_ I 0
(h s)G 2)=G D @2102)
Hence the matrices on the left hand side are unimodular. Thus
X Y\/(lq 0)_(qu 0><—X YPZ)
<P1 51>(0 ) \o J\1 s (2.103)

in which the first matrix on the left hand side is unimodular. Also
I X\(—X YPR\(=S, I_ (g 0
(0 1)(1 Sz)(l 0)_(0 1)

and so the last matrix on the right hand side of (2.103) is unimodular. Therefore
(2.103) states that P, and P, are eue.

(ue = zce) Assume that the following holds
<M11 M12> (1 0 ) _ (1 0 ) (N11 N12)
M21 M22 0 Pl 0 PZ N21 N22
M N

where M and N are unimodular. Writing this as

<M11 M12P1)

( Nll N12 )
M21 M22P1

PyNay PyNp,

Therefore M,,P; = P,N,, and
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M=<M11 M12> N=(N11 M12P1>
PNy Myy) ! Nyy Ny,

Hence P, and M,, are zlc otherwise M is not unimodular. Similarly P; and N,, must
zrc.g

Theorem 2.14 [19]
Suppose that P, (x) € P(p, q) of rank r; and with dimensions p; — q; = p, — ¢, (=
p — q) are Z.C.E. according to the relation (2.89). Then

[P =2l g o1 (2.104)

ri—i =i’

where r = min (r; — ry). Forany i > r, Ir[’l’i]i =<1>incaser; —i=>0o0r Ir[fi]i =<
1>incaser, —i>0.

Proof.

Suppose that h= min(pl,ql)’ M, =min(p,. %) ang 1et 1= 2 and its complement i’
h<h

a0
"(Z)_(o R(Z)J

It is clear that the ideals generated by the various minors of HORAC) are related as

in{1,2} be such that

Let

[P] .
|h... — |P[TP.]
(Rl _(IR]
Ih-'fhiﬂ - Il

Pl
L= (2.105)

R(2).P.(2)

Now are Z.C.E. as either of the statements
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@ IQE(Q:R@XO )

0 0
[, _]R(Z)= F}(Z)[I }

confirms. Hence from the transitivity of Z.C.E. relation it follows that
Z.C.E.

R@.P@)

We establish the theorem for R@). Pi' @) which are of identical dimensions.

Let N=min(p.a) then from the coprimeness requirements of Z.C.E. 3 polynomial

matrices X (2),Y (2)\W(2),Z(2) of appropriate dimensions such that

MX +RY =1

WP, +ZN = |
2 T q (2.106)

From (2.89) and (2.104) it follows that

w -z\(p x) [l J
M P J-N Y) |0 I
P (2.107)
where J =WX -ZY"

iy oo . .
For any matrix Q et Qi denote the KxK submatrix formed from rows "'~ and

columns 1+ J«_Consider then the following equation formed from (2.107)
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| —
A ; (2.108)

..... Sth - .. S=1
element is 1 if t and zero

otherwise.

Take determinants of both sides of (2.108), and use the Cauchy-Binet theorem to
expand the left hand side. This gives

(2.109)

Now the form of A indicates that any factor of A of the type occurring in the left hand

{m,..m.}

side of (2.109) for which (LURU is not a subset of is zero. Thus all

minors of A which occur in the left hand side of (2.109) contain the columns b}
. Such a factor is then expressible via Laplace expansion in terms of products of

i s

minors of M ko R

R of order K and greater.

is expressible as a linear combination of

minors

Since any minor can be expanded in terms of lower order minors, it follows that
Vi i
2 g e Ji

can be written as a linear combination of the order k minors of Pl. It thus

[R] — [R] _
follows that '« ~ <1k k=L...h

whre N=min(p.q).

By the symmetry property of the Z.C.E. relation 3 P *4-8 %4 polynomial matrices
M (2),N'(2) gych that

M F’l = PZIN'

M (2).P, (2)

where are zero left coprime, and R@.N (@) are zero right coprime.

Applying the same procedure as above gives
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[P] [R1
[Pkl

where k:L""h. Hence

(Bl _ ([R] _
2 =1, ywk_l,...,h_

Let 1=1L2} and its complement i’ in{1,2} be such that h < hi'. It follows from the
above and the relation (2.105) that in terms of the original matrices P; (x), P,(x) we
have

1, =1
I, =1
[P]
5 = (1)
AN
L= (2.110)
Now since r;» = rankP; we have
[Pi’] _ _ [Pi’] _ [Pi’]
Ihi - Ihi—hir+7‘il+1 - {0} * Ihi—hil+1"il'
Hence

T'i’ = hi - hi’ + T'i’

and so the relation (2.110) reduce to
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[

r
I

Rl _ IRl
. h

Rl _ IRl
I =l

ri'_ri+1

1 = (1)

r.—n
i

which completes the proof.

Corollary 2.2 [24]

Suppose that two polynomial matrices Py, P, are related by Z.C.E. then the invariant
zeros are related by

ZgniPi} = Z,_n{P,} (2.111)
where p = min (p,, q2), = min (p;,q,), 0 < n < min (p, q).
Proof. [28]

Since N (x), P, (x) are zero right coprime and M (x), P, (x) are zero left coprime there
exist polynomial matrices X (x),Y (x), W (x) and Z(x) of appropriate dimensions such
that

MX +PY =1,

(2.112)
WP, +ZN =1,
From (2.89) and (2.105) it follows that
(o )G D=(5 )
M P J\-N Y/ \O0 I,

where | = WX — ZY. Now, replace [W —Z] with [E 0] which gives

<E 0 Pz X B P2 ll,...,lqz Xll""'lfIZ 2113

M P1>(—N Y)_ 0 L, ) (2113)
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where, in the case p, = g, (and hence p; = q,) the constant matrix E,y,, is the unit
matrix I,, with p, — q, zero columns to forma g, X p, matrix [y, ..., l,, correspond
to the rows of the matrices P, and X selected by multiplication by E.

For any matrix R let R]‘;;’; denote the k X h submatrix formed from rows iy, ..., i),

and columns j, ..., j,. Consider the following (p; + k) X (p; + k) submatrix formed
from (2.113)

il""'ik P . . X ll;---;lq il""'ik ll,...,l él""'i.k
(E kaq1)< 251 ik ) _ <(P2 ) Xtz _
M Pl _M1.---.jk Y 0 I

P1

(2.114)

Take determinants of both sides and using the Cauchy-Binet Theorem, (2.114) shows
that
il""lik

Il
= |P,1rtan ..
| 2 J1,0Jk

Z Al,...,p1+k
m ml,...,mp1+k

my,...mMp,+k
B1 P1
,wD1tHk

Noting that [y, ..., [, are arbitrary, and by considering all combinations of the

columns of E‘-& and the form of A4, it can be seen that the only non-zero minors are
those involving columns iy, ..., i, of the first block column. Such a factor can then be
expressed via the Laplace expansion in terms of minors of M and P;. The smallest
minor of P; occurring in the Laplace expansion is of order g + k — p, where g=

min (py,q,) and p = min (p,, q;). Therefore the minors of P, of order k are linear
combinations of the minors of P; of order g + k — p. Hence the determinantal
divisors of P; (x) and P, (x) are related by the equation

qu+k—n{P1} € Ny {P,}
and letting k = p — i gives
Uq—i{P1} c Up—i{Pz}
In an analogous manner it is possible to write
Z

(W —Z>(P2 0): lo, ~Zuy,
M P )\-N E 0 lpyy,

walpy

and therefore it can be deduced that the determinantal divisors of P; (x) and P, (x) are
also related by the equation

MitP2} € Ngrk—p{Pi}
Again letting k = p — i gives

np—i{Pz} c nq—i{Pl}
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Therefore the following is true
Np—-itP2} = ng-i{P1} (2.115)

Now since the determinantal divisors are equal this implies that the invariant zeros
must also be equal, giving

Zo-ntPt} = Zp_nlPy) (2.116)

which is the required result.

Note: So we see that invariant polynomials and invariant zeros are invariants of
Z.C.E.

Definition 2.28 [26]
P, (x4, x5), P, (x4, x,) € P (m, 1) are said to be FACTOR COPRIME EQUIVALENT
(F.C.E.) if there exists polynomial matrices M(x, x,), N(x;, x,) such that

P,(x;,x,)
M(xy, %) Py (xg,x [2 L2 l=0 2.117
MG, x2) PG| 2 (2.117)
where the compound matrices
P,(x1, x2)
M(xq, x P, (x4, x ; 2.118
[M(x1, %) Py (e, )] NOr ) (2.118)

are factor coprime i.e. ifall the (r + m) x (r + m) (resp. (r +1) X (r + 1)) minors of

[M(xy,x,) P (xq,x,)] (resp. [Pz(xl,xz)

have no polynomial factor.
—N(xbxz)]) Poly

Corollary 2.3 [27]

Suppose that two polynomial matrices P; (x4, x), P, (x4, x,) with sizes p; X g, and
P, X q, respectively and p; — q; = p, — g5, are related by a polynomial equation of
the form

N]_ (xl, xz)Pz(xl, xZ) = N2 (xl,xZ)Pl(xl, XZ) (2119)

where N; (x4, x,),N,(xq,x,) are p; X p,,q; X g, polynomial matrices and
N; (x4, x5), P; (x4, x,) are minor right coprime, N, (x4, x,), P, (x4, x,) are minor left
coprime.
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(). LetLetd;M(xy,x,),dyM(xy, %), ...,dq[l] (x4, x5), where ¢ = min (p4, q;),
denote the invariant polynomials of the polynomial matrix P; (x,,x,) and
d, B (xy, x5), dy B (xg, x2), 0, dp[z] (x4, x,), where p= min (p,, g,) denote the
invariant polynomials of the polynomial matrix P, (x,, x,) then

d _i[l] = c;d 2] fori = 0,1,.., max(p—1,q — 1)

q p—i
where d;1 =1,d,¥ =1 forj < 1,¢; € R\{0}.

(ii).  Let e;M(xy,x,), e,1M(xq, x,), ..., e,11(x4, x,), where r= min (p;,p,), denote
the invariant polynomials of the polynomial matrix S, (x4, x,) and
e [F(xy, x,), 6,18 (x4, x,), ..., e,21(x1, x,), where t = min (qy, q,) denote the
invariant polynomials of the polynomial matrix S, (x4, x,) then

e, =ce,_;?l fori=01,..,max (r —1,t — 1)
where ¢t =1, 2 =1 for j < 1,¢; € R\{0}.
Proof.

Since N; (x4, x5), P; (x4, x,) are minor right coprime and N, (x4, x,), P,(x,, x,) are
minor left coprime there exist polynomial matrices X;(xq,x,), Yi(xq,x5),

Wi (x4, x,),Z;i(xq,x,) for i=1,2 of appropriate dimensions such that
X1Py + V1N, = ¢;(x1)],
for i=1,2 (2.120)
NyZy + PWy = @i(x1)1p

where ¥; (x;), p;(x,) are polynomials. From (2.119) and (2.120) it follows that

[X1 Y, ] P, Z ]= llpi(’(f)ﬂlq J1 l (2.121)

N, —=PB]IN, W <Pi(x1)1p

where J; = N,Z; + Y; W, . Now take i=1 and replace [_ZV?/] with [?] Then (2.121)
1

gives

e [ B Y 2122

For any matrix Q let Q]lij’; denoted the k x h submatrix formed from rows i, ..., iy

and columns j, ..., j,. Consider the following (q + k) % (g + k) submatrix formed
from (2.122)
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X1 Y P, Ogxk ¥ilq Y1j1 wJh
N. I1,-0lk P. i 1 ]V1 i = 0 P lk (2123)
1 Piji,..jn kxq 2]1 I
A B

Take determinants of both sides and use the Cauchy-Binet Theorem and (2.123) to
show that

1,...9+k
Ly, olgrk

ll""llq+k
1,..,q+k

= 1, [Pyl | (2.124)

lei1<"’<iq+k 1,

Now the form of B indicates that any factor of B of the type occurring in the left-
hand-side of (2.124), for which {q + j;, ..., q + ji} is not a subset of {I;, ..., [« } is
zero.

Thus all the non-zero minors of B which occur in the left-hand-side of (2.124) contain
the rows q + j;, ..., q + j. Such a factor is then expressible via Laplace expansion in
terms of minors of N; and P;. The smallest minor of P; occurring in this Laplace

expansion is of order g + k — p. Therefore if gi[l] (x1,x,) for i =1, ..., q denotes the
greatest common divisor of the i X i minors Py, it follows that

) -
o |17 1Py e (2.125)

where g([;ﬂk_p =1lifg+k—p<0.

If then gi[Z](xl.XZ) fori = 1,...,p denotes the greatest common divisor of the i X i
minors P,, it follows from (2.125) and the fact i, ..., iy and j,, ..., ji are arbitrary that

gl gl (2.126)
On the other hand if we take i = 2 then the same argument shows that
g g k=1,..p (2.127)

Statements (2.126) and (2.127) then imply since ;, 1, are factor coprime

g([;ﬂk—plg][f] k = 1; :p

or, on writing k = p — J,

g([;_]j|gz[,2_]j j=0,...max (p—1,9g—-1) (2.128)

(1]

where, if necessary, g i [2]

=19 =1forj <1

Now in (2.121) replace [X; Yi] with [/; 0] to give

M —(1)3] A B [ oul, (2.129)
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The same argument surrounding (2.122) may now be used in the case of (2.122) to
show that

géz_]j|gc[11_]j j=0,..,max (p—1,q — 1). (2.130)
Statements (2.128) and (2.130) then yield, modulo a constant non-zero factor,
(1] _ 2] _ _ _ 213
gq_j(xl,xz) = gp_j(xl,xz),] =0,...,max(p—1,q — 1) (2.131)

Now g,[ll] (x1,x5), g,[lz] (x4, x,) are the determinantal divisors of D; (x4, x5),
D, (x4, x,) respectively, and so from the relationship between the determinantal
divisors and their invariant polynomials the result (i) follows.

In the case of N; (x4, x;) and N, (x4, x,) the argument presented above will carry
through with some minor modifications. Specifically, in the case p < q for example,
the equation corresponding to (2.121), for i = 1,2, is

= 2.132
[Nz —P]IN; O 0 Ly s by ( )

where the constant matrix E, is the unit matrix I,, with g — p zero rows to forma

q X p matrix and Iy, ..., ,, correspond to the columns of the matrices N, and X;
selected by multiplication by E. The analogue of (2.122) is obtained by selecting
rows iy, ..., i, from the second block row and columns j,, ..., j,, from the second block
column. By considering all combinations of the rows of E; _ ; and the form of the

second matrix on the right-hand-side of (2.125), i.e. the only non-zero minors are
those involving rows jy, ..., j of the first block row, it is seen by taking all 1 < i; <
e <ip<pand1l <j; < <jp < gthat

i,

where h,[{”h,[{z] are the greatest common divisors of the k X k order minors of

N; (x4, x52), N, (xq,x,) respectively. Also by considering i = 2
2 b,
Therefore, by similar reasoning surrounding (2.128)
e for k=1,...,p.

Now the equation corresponding to (2.129) is

[0 E le Zl]_ Ny, Wb
N, —=P,]|N;, W, . (pllp

where E and 1, ..., [,, are defined in (2.132). Thus the result

94



“Notions of equivalence of multivariate polynomial matrices”

W pt for k=1,..,p
is obtained by a similar discussion to that following (2.125). Therefore
W= conPfor k=1,..,p

where ¢, € R\{0} for k = 1, ...,p and (ii) is established.

Note: So we see that invariant polynomials are invariants of M.C.E, since
M.C.E.=F.C.E. in 2-D polynomial matrices, the invariant polynomials are also
invariants of F.C.E.
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