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ΠΕΡΙΛΗΨΗ 

 

 

 

Στην παρούσα διπλωματική εργασία γίνεται μελέτη των βάσεων Gröbner και του 

αλγόριθμου εύρεσης τους (Buchberger αλγόριθμος). Επίσης πραγματεύεται σχέσεις 

ισοδυναμίας και συγκεκριμένα ισοδυναμίες 1-D και 2-D πολυωνυμικών πινάκων. Η 

εργασία είναι χωρισμένη σε δύο μέρη. 

Το πρώτο μέρος της εργασίας, ασχολείται με τις βάσεις Gröbner, καθώς και τον 

αλγόριθμο του Buchberger για την εύρεση αυτών. Επίσης, δίνεται ο τρόπος εύρεσης 

τους μέσα από το πρόγραμμα Mathematica. 

Το δεύτερο μέρος της εργασίας, περιλαμβάνει έννοιες των 1-D και 2-D 

πολυωνυμικών πινάκων και τα σημεία στα οποία αυτές διαφέρουν. Επίσης, γίνεται 

εκτενής ανάλυση της αντιστρέψιμης ισοδυναμίας (unimodular equivalence) που 

αφορά πολυωνιμικούς πίνακες ιδίων διαστάσεων και της γενικευμένης αντιστρέψιμης 

ισοδυναμίας (extended unimodular equivalence) που αφορά πολυωνυμικούς πίνακες 

διαφορετικών διαστάσεων. Τέλος, δίνονται οι zero coprime και factor coprime 

ισοδυναμίες και τα αναλλοίωτα στοιχεία αυτών. 
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ABSTRACT 

 

 

 

In the present Thesis is studied the Gröbner bases and their algorithm (Buchberger 

algorithm). Moreover, it concerns about equivalence relations and specifically 

equivalences of 1-D and 2-D polynomial matrices. This paper consists of two parts. 

The first part of this thesis deals with Gröbner bases, as well as Buchberger algorithm 

for finding these. Furthermore, it is given the way to find them through the program 

of Mathematica. 

The second part of this thesis includes notions of 1-D and 2-D polynomial matrices 

and the points on which they differ. There is also an extensive analysis of the 

unimodular equivalence which is about polynomial matrices of the same dimension 

and of the extended unimodular equivalence that is about polynomial matrices of 

different dimensions. Lastly, given the zero coprime equivalence and factor coprime 

equivalence and the invariants of them. 
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Glossary of Notation 
 

 

    R or C; 

    the field of real numbers; 

     the ring of polynomials in the single indeterminates    with 

coefficients in the field  ; 

              the ring of polynomials in the   indeterminates             

with coefficients in the field  ; 

    an ideal; 

    the natural numbers; 

           

           the     order minor of the matrix   using rows             and 

columns           ; 

             the determinant of the matrix  ; 

        the adjoint of the matrix  ; 

         the rank of the matrix  ; 

      the inverse of the matrix  ; 

     the generalized inverse of the matrix  ; 

     the transpose of the matrix  ; 

     the identity matrix with dimension    ; 
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Gröbner bases 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



“Notions of equivalence of multivariate polynomial matrices” 
 

 
11 

 

1.1 Primary notions and definitions 

 

Initially, we will mention some primary notions and definitions, which will help us to 

understand better the aftermath. The ring is one such a notion, which is an algebraic 

structure with two binary operations. 

The theory of rings sprang through the study of two specific rings classes, the ring of 

polynomials in   variables over the real or complex numbers and the “integers” of a 

body of algebraic numbers. First it was David Hilbert (1862-1943) who introduced 

the term ring, but it needed to get to the second decade of 20
th

 century to see a 

completely abstract definition. The theory of computing rings was founded by Emmy 

Noether (1882-1935) in her monumental work “Theory of Ideals in Rings”, which 

appeared in 1921. 

 

Definition 1.1 [1] 

A group, denoted      , is a set  , together with a binary operation   in  , such 

that the following axioms are satisfied: 

G1. The binary operation   is associative. 

G2. There exists an element   in  , such that           for every    . 

(This element   is called identity element for   in  ) 

G3. For every   in  , there exists an element    in   with the property      

      . (The element    is called inverse of   as to the operation  ) 

Note: A group   is called abelian (in honour of Niels Abel) if the binary of the 

operation   is commutative. 

 

Definition 1.2 [1] 

A ring, denoted        , is a set with two binary operations + and  , referred to as 

addition and multiplication, which satisfies the following axioms: 

R1.       is an abelian group. 

R2. Multiplication is associative. 

R3. For all            the left distributivity law is valid,             , 

and the right distributivity law,             . 

If, in addition, multiplication is commutative too, i.e.        for all 
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            , then         is called a commutative ring.         is called a 

ring with  , or ring with unity if it contains a distinguished element   with     and 

      for all          . 

 

Definition 1.3 [9] 

The set of polynomials           
             , n finite, is denoted  

    . On      we can define with the natural way the addition and multiplication. 

Then it can be easily proved that      is a ring. 

 

Since      is a ring, it makes sense to consider the set          , i.e., polynomials in 

y with coefficients in     . We see that 

                       
                  

                
          

     

            
                  

                   . 

So                    , and can therefore be denoted by        without any risk 

for confusion. Likewise, we can define the polynomial ring over R in n variables 

          . This polynomial ring is denoted by              . 

 

Example 1.1 

 We know that the axioms       of the ring are valid in every subset of complex 

numbers which is group with the addition and closed as to the multiplication. For 

example,        ,        ,         and          are all rings. 

 

In ring theory, a special subset of a ring is an ideal. Ideals generalize certain subsets of 

the integers. Ernest Eduard Kummer (1810-1893) was the person who introduced the 

notion of “ideal of complex number” in 1847, in his effort to retain the notion of 

unambiguously analysis in some rings of algebraic integers. 
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Definition 1.4 [4] 

Let      and      be rings and             a mapping. Then   is called a 

homomorphism of rings if the following hold: 

(i).                  for all          

(ii).                for all          

If in addition      and      are rings with unities    and   , respectively, then we 

require that 

(iii).             

 

We will often drop this distinction and just write “1” and “0” even when more than 

one ring is involved. A homomorphism   is called an embedding if   is injective, and 

an isomorphism if   is bijective. A homomorphism from a ring      to itself is called 

an endomorphism, and an isomorphism from   to itself is called an automorphism.   

Note: It follows from the definition that if             is a homomorphism, then 

the image of the zero element in      is the zero element in     , i.e.         , 

because for any r we have                         and hence         . 

 

Definition 1.5 [4] 

Let             be a homomorphism of rings. We define the kernel of   by setting 

                       

 

Lemma 1.1 [4] 

Let             be a homomorphism of rings. The         is a proper ideal of 

    . 

Proof.           since         . If           , then            , 

hence                       , and thus           . If   

       and    , then       , hence 

                       

and thus          . The ideal        is proper since            and thus 

         .□ 
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Definition 1.6 [2] 

A no-empty subset   of a ring      is called ideal of     , if the following are valid: 

(i).      , for all      , and 

(ii).     , and     , for all    , and     

If instead of relations     , and     , is valid only     , for all       , and 

   , then   is called left ideal of  [x]. Respectively, if is valid only the relation 

    , for all       , and    , then   is called right ideal of     . 

If       is called trivial and if        is called proper. 

 

Before the notion of what a basis is, we will need some other notions first. The most 

important notion is that of linear independence. 

 

Definition 1.7 [3] 

Let            elements of  -vector space  . Linear relation of            is a 

relation 

                         (1.1) 

where             . 

The            are called linearly independent if there exists no relation between 

them, except the trivial, where all coefficients    are zero. Equivalents            

are linearly independent if from a linear relation (1.1) we conclude that     , for 

          

                                  . 

 

Example 1.2 

A. Elements       and (0,1) of  -vector space    is linearly independent, 

since if 

                                               

B. In  -vector space    denote 

                                               

 The elements            are linearly independent since if  
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We also observe that, for the random element                 , is valid that  

                               

Consequently,                    , where     : the space spanned by the 

set of X. 

 

Definition 1.8 [3] 

Basis of a  -vector space   is called a linearly independent generating set of   and it 

is denoted by  , namely 

                                                  

 

Example 1.3 

A. The set           where          and          is a spanning set of   . 

It is also linearly independent for the only solution of the vector equation      

       is the trivial solution. Therefore,   is a basis for   . It is called the standard 

basis for   . 

 

B. The elements             of      are a basis of  -vector space     . The 

set               of      is linearly independent                       (since    
   

    
        

     then     ,       namely every finite subset of 

              is linearly independent) and every polynomial             

       belongs to     . 

 

 

 

 

 

 

 



“Notions of equivalence of multivariate polynomial matrices” 
 

 
16 

 

1.2 Monomial Ordering 

 

Before we introduce the notion of monomial ordering we should know the form of a 

polynomial with more than one variable. Below is given first the definition of 

polynomials of one and then of   variables. 

 

Definition 1.9 [1] 

Let      a ring. A polynomial      with coefficients in      is an infinity typical sum 

      
  

          
             (1.2) 

where         and      except for finite range of values of  . The    are 

coefficients of     . If for some      is valid     , the largest of them is called 

degree of     . If there exists no such a value, then we say that      has zero degree. 

 

Definition 1.10 [10] 

A monomial is a product of powers of variables with nonnegative integer exponents, 

or, in other words, a product of variables, possibly with repetitions. 

 

The constant   is a monomial, being equal to the empty product and    for any 

variable   is considered, this means that a monomial is either   or a power    of  , 

with   a positive integer. If several variables are considered, say,       then each can 

be given an exponent, so that any monomial is of the form        with       non-

negative integers. 

Every monomial has a representation of the form    
    

     
  (        ).  

 

Definition 1.11 [5] 

We consider polynomials               in   variables with coefficients in  . Such 

polynomials are finite sums of the form    
    

     
  , where    , and     , 

       . We call   
    

     
   a power product. 
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Example 1.4 

The      
    

    and     
            are polynomials in   variables. 

 

The basic of              , which is a  -vector space, is the set,   , of all power 

products,  

        
    

     
                    (1.3) 

Sometimes we will denote   
    

     
   by   , where                   . 

 

Definition 1.12 [9] 

The degree of an element     
    

     
   in a polynomial ring               

is  

                               (1.4) 

The degree of a non-zero polynomial                          
  

    
     

   

equals 

                  
    

     
               

      (1.5) 

 

To introduce the notion of Gröbner bases and the algorithm which helps us to find 

them, we should be able to compare any two power products. 

The orders in the linear and one variable cases are used to define a division (or 

reduction) algorithm. 

 

Definition 1.13 [5] 

By a term order on    we mean a total order   on    satisfying the following two 

conditions: 

(i).      for all      ,      

(ii). If      , then          , for all      . 

 

Proposition 1.1 [5] 

For         , if    divided    then      . 
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Proof. By assumption there is an       such that         . By condition (i) in 

Definition 1.11 we have      and so by condition (ii) we have            , 

as desired.□ 

 

To compare any two power products, the order must be a total order, that is, given any 

        , exactly one of the following relations must hold  

                             (1.6) 

Also, for any             we have: 

                                     (1.7) 

If we want the reduction to be finite, we need that order be a well-ordering, that is, 

there is no infinite descending chain           in   .  

 

The most frequently used descriptions of ordering have at most two defining 

conditions: a degree and a (normal or reverse) lexicographical comparison. The most 

famous are: 

a) Lexicographic order 

b) Reverse lexicographic order 

c) Degree lexicographic order 

d) Degree reverse lexicographic order 

 

 Let                and                be vectors belonging to   
 . 

We define the total order      on    by setting          if either 

(i)   
 
       

 
   , or (ii)    

 
       

 
    and the left most non-zero 

component of the vector     is negative. It follows that      is a monomial 

order on               which is called the lexicographic order on 

              included by the ordering           . 

 Let                and                be vectors belonging to   
 . 

We define the total order      on    by setting          if either 

(i)   
 
       

 
   , or (ii)    

 
       

 
    and the right most non-zero 

component of the vector     is negative. It follows that      is a monomial 

order on               which is called the reverse lexicographic order on 

              included by the ordering           . 

 Let                and                be vectors belonging to   
 . 

We define the total order         on    by setting             if either 

(i)   
 
       

 
   , or (ii)    

 
       

 
    and       with respect to 
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lexicographic order with           . It follows that         is a 

monomial order on               which is called the degree reverse 

lexicographic order on               included by the ordering       

    . 

 Let                and                be vectors belonging to   
 . 

We define the total order            on    by setting                if 

either (i)   
 
       

 
   , or (ii)    

 
       

 
    and       the right 

most non-zero component of the vector     is positive. It follows that 

        is a monomial order on               which is called the degree 

reverse lexicographic order on               included by the ordering 

          . 

 

Example 1.5 

A. Consider   the polynomial 

 

               
   

             
   

  

 

We assume that           . 

Let be α=(2,3,0), β=(1,1,1) and γ=(2,0,3), so  α-β=(1,2,-1), β-γ=(-1,1,-2), α-γ=(0,3,-3) 

and |α|=5,|β|=3 and |γ|=5. 

 

 With respect to Lexicographic order , p is written in decreasing order as : 

 

               
   

     
   

          

 

Because the left-most non-zero entries of α-β and α-γ are positive, therefore 

  
   

            and   
   

       
   

  respectively. But the left-most non-zero entry 

of β-γ is negative, therefore    
   

           . 

 

 With respect to Reverse lexicographic order , p is written in decreasing order 

as : 

 

            -7  
   

             
   

  

 

Because the right-most non-zero entries of α-β , α-γ and β-γ are negative, therefore      

                
   

 ,    
   

          
   

  and    
   

                respectively. 

 

 

 With respect to Degree  lexicographic order , p is written in decreasing order 

as : 
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p(        )=    
   

 -7  
   

 +5       

 

Because     
   

            ,     
   

        
   

   ,     
   

               and |α|>|β|, 

|α|=|γ|, |β|<|γ|, therefore   
   

                ,    
   

           
   

  and  

  
   

               respectively. 

 

 

 With respect to Degree Reverse  lexicographic ordering , p is written in 

decreasing order as : 

 

p(        )=    
   

 -7  
   

 +5       

 

Because the right-most non-zero entries of α-β ,  α-γ ,  β-γ are negative and |α|>|β|, 

|α|=|γ|, |β|<|γ|, therefore   
   

                  ,    
   

             
   

  and 

  
   

                   respectively. 

 

B. Consider the polynomial  

 

p(           )=    
               

  

 

We solve the exercise with             . 

Let be            ,             and            , so                , 

                and               , and          ,      . 

 

 With Lexicographic order,   is written in decreasing order as: 

 

p(           )=             
       

  

 

Because        ,         and        , and the left-most non-zero component of 

the vector     is negative and    ,     is positive, therefore 

               
 ,     

          
   and                

   respectively. 

 

 With Reverse lexicographic order,   is written in decreasing order as: 

 

p(           )=             
       

  

 

Because        ,         and        , and the right-most non-zero component 

of the vector     is positive and    ,     is negative, therefore 

               
 ,     

          
   and                

   respectively. 
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 With Degree lexicographic order,   is written in decreasing order as: 

 

p(           )=             
       

  

 

Because        ,         and        , and                
 ,     

          
  ,  

               
 , therefore                   

 ,     
             

   and 

                  
   respectively. 

 

 With Degree Reverse lexicographic order,   is written in decreasing order as: 

 

p(           )=             
       

  

 

Because        ,         and        , and the right-most non-zero component 

of the vector     is positive and    ,     is negative, therefore 

                     
 ,     

                
   and                      

   

respectively. 

 

Definition 1.14 [9] 

We call an ordering a degree ordering if the most important criterion for comparison 

is the degree of the monomials. In the sequel we assume that a monomial order for    

has been fixed. 

 

Definition 1.15 [6] 

Let be a non-zero polynomial in                

One can write: 

           
 
        (1.8) 

with         ,       and        . 

 the leading term    of   is denoted by       

 the leading coefficient    of   is denoted by       and  

 the leading monomial      is denoted by      . 
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Example 1.6 

A. Consider the polynomial which is used in Example 1.5A: 

 

p(        )=   
   

 +5      -7  
   

  

 

we prove that : 

 

 with respect to lexicographic ordering, p is written in decreasing order as: 

 

p(        )=    
   

 -7  
   

 +5       

 

and therefore it can be seen from the above definition that : 

i.         
   

  

ii.         

iii.          
   

  

 

 with respect to Reverse lexicographic ordering, p is written in decreasing 

order as: 

 

p(        )= -7  
   

             
   

  

 

i.         
   

  

ii.          

iii.           
   

  

 

 with respect to Degree lexicographic ordering, p is written in decreasing 

order as: 

 

p(        )=    
   

 -7  
   

 +5       

 

i.         
   

  

ii.         

iii.          
   

  

 

 

 with respect to Degree Reverse lexicographic ordering, p is written in 

decreasing order as: 

 

p(        )=    
   

 -7  
   

 +5       

 

i.         
   

  

ii.         
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iii.          
   

  

 

B. Consider the polynomial which is used in Example 1.5B: 

 

p(           )=    
               

  

 

we prove that : 

 

 with respect to Lexicographic ordering, p is written in decreasing order as: 

 

p(           )=             
       

  

 

and therefore it can be seen from the above definition that : 

 

i.              

ii.          

iii.                

 

 with respect to Reverse lexicographic ordering, p is written in decreasing 

order as: 

 

p(           )=             
       

  

 

i.              

ii.          

iii.                

 

 with respect to Degree lexicographic ordering, p is written in decreasing 

order as: 

 

p(           )=             
       

  

 

i.              

ii.          

iii.                

 

 

 with respect to Degree Reverse lexicographic ordering, p is written in 

decreasing order as: 

 

p(           )=             
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i.              

ii.          

iii.                

 

Definition 1.16 [7] 

Let   be an ideal of              . The initial ideal of  , denoted by      , is given 

by 

                         .   (1.9) 
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1.3 Division algorithm 

 

Before we define Gröbner bases , we have to deal with the division algorithm for 

polynomials in more than one variables. 

Firstly, we will see Dickson’s lemma, which is important because it will justify our 

choice of    to be a finite set, in our examples. 

 

Lemma 1.1 [9] 

Every monomial ideal in               is finitely generated. 

Proof. Let     . We proceed by introduction on  . Since in      is principal, the 

lemma is true for    . Suppose it is true for     variables, and let   be a 

monomial ideal in              .  Let 

         
 

                       . 

Since    is an ideal in                , we can choose    to be finite. We have 

       . It follows easily that     is an ideal   in                 and hence 

finitely generated      . If      is a monomial then       
  for some 

monomial                   and some  . 

Since     
    we get         

  , so      
    . Thus            

  
      is a generating set for  . But for some   we have that       if    , so 

            
    is a (finite) generating set for  . 

 

Definition 1.17 [5] 

Given       in               with    , we say that   reduces to   modulo   in 

one step, written  
 
  , if and only if       divides a non-zero term   that appears in 

  and  

        
 

     
     (1.10) 

 

Example 1.7 

Let              ,          . Also, let the order be lexicographic 

with    . We have           and        . 



“Notions of equivalence of multivariate polynomial matrices” 
 

 
26 

 

               
  

 
    , where          

 

 
       

                
  

 
        , where    

 

 
           

                
  

 
      

 

 
    , where            

 

 
  

       doesn’t divide         

So, we have 

 
 
       

 

 
      

 
 

 

 
          

 
         

 

 
  

 

 

In the multivariable case we may have to divide by more than one polynomial at a 

time, and so we extend the process of reduction defined above to include this more 

general setting. 

 

Definition 1.18 [5] 

Let     and         be polynomials in              , with      (     ), and 

let            . We say that   reduces to h modulo  , denoted 

 
 
   , 

if and only if there exist a sequence of indices                 and a sequence of 

polynomial                       such that  

 

 
   
    

   
    

   
   

     
        

   
    

 

Example 1.8 

Let             ,         ,         . Also, let the order be lexicographic 

with    . We have                                    . 

                      , where          

        doesn’t divide        , while  

                          , where         

 None of        doesn’t divide       , so        . 

Eventually, 

               

The above process according to Definition 1.18 can be described as follows: 

 
  
       

  
      

 

It’s important to say that quotients and remainders of division depending as much on 

the monomial ordering as the order of polynomials. 

 

Now we will present the Generalized Division Algorithm: 
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Theorem 1.1 [7] 

Let                  denote the polynomial ring in   variables over a field   and 

fix a monomial order   on  . Let         be non-zero polynomial of  . Then, given 

a polynomial      , there exist polynomials         and    of   with  

 

                           (1.11)  

 

such that the following conditions are satisfied: 

(i). if       and if           , where                     , then none of 

the divides  , i.e. no monomial            belongs to                 ; 

(ii). if     , then  

               

 

 

The right-hand side of equation (1.11) is said to be a standard expression for   with 

respect to         and the polynomial    is said to be a remainder of   with respect 

to        .  

 

To prove the Theorem 1.1, we need the following lemma: 

 

Lemma 1.2 [7] 

Let be a monomial order on                . Then, for any monomial   of  , 

there is no infinite descending sequence of the form  

 

                   (1.12) 

 

Proof. Suppose, on the contrary, that one has an infinite descending sequence (1.12) 

and write   for the set of monomials          . It follows from Dickson’s lemma 

(Lemma 1.1) that      is a finite set, say                  with         

  . Then the monomial       is divided by     for some      . Thus          
, 

which contradicts        .□ 

 

Now, we are ready to prove Theorem 1.1: 

 

Proof. Let                    . If none of the monomials           belongs to 

  and write respect to   among the monomials           belonging to  . Let, say, 

        divide    and              . 

We rewrite  

 

    
    

          , 

 

where   
  is the coefficient of    in   and    

 is that of       
  in    

. One has  
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If either      or, in case of     , none of the monomials            belongs 

to  , then     
    

           is a standard expression of   with respect to         

and    is a remainder of  .  

If a monomial of          belongs to   and if    is the monomial which is biggest 

with respect to   among the monomials            belonging to  , then one has  

      

In fact, if a monomial   with      (          ) belongs to         , then   

must belong to        . This is impossible. Moreover,    itself cannot belong to 

        . 

Let, say,       
  divide    and              . Again, we rewrite 

 

    
    

          
    

           

 

where   
  is the coefficient of    in    and     is that of       

  in    . One has  

 

        
          

       . 

 

Continuing these procedures yields the descending sequence 

           

 

Lemma 1.2 thus guarantees that these procedures will stop after a finite number of 

steps, say   steps, and we obtain an expression 

 

     
    

       
   
      , 

 

where either      or, in case     , none of the monomials            

belongs to  , and where 

 

 

                    
       . 

 

Thus, by letting      
 
       

    
       

   
    and      , we obtain an expression 

       
 
       satisfying the conditions (i) and (ii), as desired.□ 
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Example 1.9 

Let          ,        and       . Als, let the order be lexicographic  

with    . We have         ,          and         . 

 

                      , where             

                             , where          

        doesn’t divide       , while 

                                  , where          

                                      , where      

 

Eventually,  

                    , 

 or 
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1.4 Gröbner bases  

 

Gröbner bases were introduced in 1965, together with an algorithm to compute them 

(Buchberger; algorithm), by Bruno Buchberger in his PhD thesis. He named them 

after his advisor Wolfgang Gröbner. In 2007, Buchberger received the Association for 

Computing Machinery’s Paris Kanellakis Theory and Practice Award for his work. 

An analogous concept for local rings was developed independently by Heisuke 

Hirokana in 1964 who named them standard bases. 

 

Definition 1.19 [6] 

Let       be an ideal of               and let                be a subset of  . 

The set   is called a Gröbner basis of   if  

 

                                     (1.13) 

  

where            are ordered with respect to a common ordering. 

 

Theorem 1.2 [5] 

Let   be a non-zero ideal of              . The following statements are equivalent 

for a set of non-zero polynomials                  

 

(i). G is a Gröbner basis for   

(ii).     if and only if  
 
    

(iii).     if and only if        
 
    with                              

(iv).            , where                  . 

Proof.           Let                . Then by Theorem 1.1, there exists 

                , reduced with respect to  , such that  
 
    . Thus       

and so    , if and only if     . Clearly, if      (that is  
 
   ), then    . 

Conversely, if     and      then      and by (i), there exists           such 

that        divides       . This is a contradiction to the fact that    is reduced with 

respect to  . Thus      and  
 
   . 

            For    , we know by hypothesis that  
 
    and since the process of 

reduction is exactly the same as the Division Algorithm, we see that (iii) follows from 

Theorem 1.1. 

           Clearly,            . For the reverse inclusion it suffices to show 

that for all    ,            , since the        generate      . Writing   as in 

the hypothesis, it immediately follows that 

                    , 
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where the sum is over all   such that                   . The result follows 

immediately. 

         Let    . Then       is in      , and hence 

                  
 
   ,    (1.14) 

for some                 . If we expand the right-hand side of Equation we see 

that each term is divisible by some       . Thus      , the only term in the left-hand 

side, is also divisible by some       , as desired.□ 

 

Example 1.10 

Let                 ,            and        . Also, let the 

order be  lexicographic  with    . We have           ,             and 

         . 

                      , where                   

   (  ),   (  ) don’t divide   (  ), so                    is a 

remainder of  . 

Now we will solve it slightly different: 

                        , where                   

                             , where              

                                 , where            

       ,        don’t divide       , so            is another remainder 

of  . 

 

We  notice that in the division algorithm a remainder of   is, in general, not unique. 

However, 

 

Lemma 1.3 [7] 

If                 is a Gröbner basis of                , then for any non-

zero polynomial   of              , there is a unique remainder of   with respect to 

          . 

Proof. Suppose there exist remainders    and     with respect to            with 

      . Since           , the initial monomial              must belong 

to      . However, since                     , it follows that none of the 
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monomials                         divides  . Hence 

                                a contradiction. 

 

Corollary 1.1 [7] 

If                is a Gröbner basis of                , then a non-zero 

polynomial   of               belongs to   if and only if the unique remainder of   

with respect to            is  . 

Proof.  First, in general, if a remainder of a non-zero polynomial   of               

with respect to            in  , then   belongs to               .  

Second, suppose that a non-zero polynomial   belongs to   and             

          is a standard expression of   with respect to           . Since   

 ,one has     . If     , then             . Since   is a Gröbner basis of  , it 

follows that                               . However, since    is a remainder, 

none of the monomials            can belong to                         .□ 

 

Definition 1.20 [6] 

A Gröbner basis                of an ideal   is called a Reduced Gröbner basis 

for   if 

(i).              and 

(ii). none of the terms occurring in    belongs to                

 

Reduced Gröbner basis is very important due to its uniqueness. As a result of its 

uniqueness, we have the next theorem: 

 

Theorem 1.3 [6] 

A reduced Gröbner basis exists and is uniquely determined. 

Proof. (Existence) Let   be a non-zero ideal of               and              the 

unique monomial system of monomial generators of      . Thus, for    , the 

monomial    cannot be divided by    for each      , we choose a polynomial 

     with          . 

Let                   be a standard expression of    with respect to 

       , where    a remainder. It follows from the property  (ii) required in the 

division algorithm that        coincides with one of the monomials 
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                                    . Since           can be divided by none of 

the monomials                , one has              .  Hence              is a 

Gröbner basis of  . Since the monomial    is a remainder of a standard expression of 

   with respect to        , each monomial of           is divided by none of the 

monomials                . 

Similarly, if    is a remainder of a standard expression of    with respect to 

             , the one has               and each monomial of          is 

divided by none of the monomials                       . Moreover, 

                is a Gröbner basis of  . Since               , each monomial of 

         is divided by none of the monomials                       . 

Continuing these procedures yields the polynomials               which satisfies 

condition (ii). Dividing    by the coefficient of        for all  , we obtain a reduced 

basis of  . 

(Uniqueness) Let              and              be reduced Gröbner bases of  . 

Since                           and                           are the minimal 

system of monomial generators of the initial ideal       of  , we may assume that 

    and               for all          . If       , then           

and                 . In particular        cannot divide          . Since the 

monomial            must appear in either          or         , it follows that 

          cannot be divided by        with    . Hence,                . This 

contradicts        .□ 
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1.5 Buchberger’s algorithm 

 

In this chapter, we will present the Buchberger’s algorithm. The Buchberger’s 

algorithm helps us to find a Gröbner basis, which got its name by Bruno Buchberger. 

A useful computational definition of Gröbner bases is in terms of S-polynomials. Let 

it be                   , where     is a least common multiple. 

 

Definition 1.21 [5] 

Let                    . The polynomial 

 

            
 

     
  

 

     
   (1.15) 

 

is called the              of   and  . 

 

Example 1.11 

A. Let         , where              and           with respect to 

lexicographic order and      . We have                        and 

                , and therefore        . 

       
     

     
  

     

    
  

 

 
     

  

 
          

 

B. Let         , where            and         with respect to degree 

lexicographic order and      . We have                 and       

        , and therefore      . 

       
   

   
  

   

  
                 

 

Theorem 1.4 [5] 

Let                be a set of non-zero polynomials in                . 

Then   is a Gröbner basis for the ideal                if and only if for all 

   , 

 

        
 
   . 

 

In order to prove Theorem 1.4, we need the following lemma : 
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Lemma 1.4 [5] 

Let                           be such that            for all          

Let        
 
    with     ,        . If        , then   is a linear 

combination, with coefficients in  , of                 . 

 

Proof. Where                       . Then the hypothesis says that 

     
 
     , since the   ’s are in  . Now, by Definition,          

 

  
   

 

  
  , 

since                . Thus 

 

                    

 

          
 

  
         

 

  
           

 

  
    

          
 

  
   

 

  
                

 

  
   

 

  
       

                    
 

    
     

 

  
                 

 

  
   

 

                                         

                              , 

 

since              .□ 

 

Now we can prove Theorem 1.4: 

 

Proof.  If                is a Gröbner basis for               , then 

        
 
    for all     by Theorem 1.2, since           . 

Conversely, let us assume that         
 
    for all    . We will use Theorem 1.2 

(iii) to prove that   is a Gröbner basis for  . Let    . Then   can be written in many 

ways as a linear combination of the   ’s. We choose to write        
 
   , with  

                         

 

least (here we use the well-ordering property of the term order). If        , we are 

done. Otherwise,        . We will find a representation of   with a smaller  , and 

this will be a contradiction. Let                      . For    , write    

                . Set             . Then,           , for all    , but 

       . By Lemma 1.4, there exist       such that  

 

                  

         

 

 

Now,                         , so 
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        , 

 

where                       . By hypothesis,         
 
   , and so we see from 

this last equation that              
 
   . This gives a representation 

 

                  
 
     , 

 

where Theorem 1.1 

 

                                                                   

 

Substituting these expression into   above, and   into  , we get      
  

     , with  

 

              
            . 

 

This is contradiction.□ 

 

 

Example 1.12 

A. According to Example 1.11A, we have             ,           and 

       
  

 
         . We have           ,            and             

     . 

 

       doesn’t divide           , while 

                         
  

 
    , where        

  

 
 

             don’t divide       , so        
  

 
 is the remainder. 

 

As a result,         isn’t a Gröbner basis. 

 

B. According to Example 1.11B, we have           ,         and 

                . We have          ,          and             

  . 
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       doesn’t divide           , while 

                                , where            

      ,       don’t divide       , so             is the remainder. 

 

As a result,         isn’t a Gröbner basis. 

 

Finally, below is given Buchberger’s algorithm for computing Gröbner bases. 

[5,6,7,8] 

 

                              with      (     ), we find a set   

            , which is a Gröbner basis for               . 

Step1. Let      and                     

Step2. While    , we choose any pair of   and then update                

Step3. Compute         
 
   . 

Step4. If    : repeat Step 2-Step 4 until    , otherwise update    and   as 

follows: 

                        

        

Step5.  Repeat Step 2 – Step 4, until    .□ 

 

Example 1.13 

A. Let                     . We use the lexicographic order with 

   . 

 

 Let           and            . We choose the pair        . 

 Then      

 We compute                 and         
 
         , so  

                   and                     

            and                , we find         
 
   .  

    , so we stop here. 

Eventually,              is a Gröbner basis for the ideal  . 
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Reduced Gröbner basis of               is the same because none of the        

divide any of the others       , with      . 

B. Let                             . We use the lexicographic 

order with    . 

 

 Let               and                             

 Then   {               } 

 We compute               , so                  and 

  {                                        } 

   {                               } and         
 
   , then 

   {                       } and         
 
       and 

                   

   {                                                       } and         
 
    and then,                                                   } 

 All the other         ,         , ,         , ,         ,         ,          
 
    and    , so we stop here. 

 

Eventually,                    is a Gröbner basis for the ideal  . 

Reduced Gröbner basis of          . 

 

 

 

 

 

 

 

 

 

 

 



“Notions of equivalence of multivariate polynomial matrices” 
 

 
39 

 

1.6 Gröbner bases in Mathematica  

 

Generally, computing Gröbner basis by hand is cumbersome, and may be impractical 

in many occasions. However, with the development of fast computers, Buchberger’s 

algorithm is now implemented in many Computer Algebra packages e.g  Theorema, 

Maple, Mathematica, Singular and CoCoA. Theorema is developed by Buchberger 

and his team. 

 

The Theorema language allows to integrate computations (“programming”) along 

with mathematical theorem proving as another crucial ingredient of theory 

exploration. As an example, it is coded an operator-based algorithm for computing 

Green's operators for linear boundary problems (both ODEs and simple PDEs) 

directly in a Theorema notebook. Their approach relies on a noncommutative 

Gröbner basis that describes the relations of the basic analysis operators appearing 

in boundary problems; 

 

 

In Mathematica, we have to use the command : 

             [{…},{x,y,z,….}] and then            . 

In the first bracket, we put     and in the second bracket, we put the unknown 

variables. 

 

Example 1.14 

A. Consider the ideal  

                             

The reduced Gröbner basis for   with respect to the lex ordering with       is 

computed using Mathematica and is given by: 

 

 

This is the reduced Gröbner basis : 

http://www.risc.jku.at/research/theorema/software/Theorema-1/bvp.nb
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B. Consider the ideal   

 

                   

The reduced Gröbner basis for   with respect to the lex ordering with     is 

computed using Mathematica and is given by: 

 

 

 

This is the reduced Gröbner basis : 

       and       

 

C. Consider the ideal   

 

                  . 

The reduced Gröbner basis for   with respect to the lex ordering with     is 

computed using Mathematica and is given by: 
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This is the reduced Gröbner basis : 

      and       
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Chapter 2 

Equivalence of Polynomial Matrices 
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2.1 1-D Polynomial Matrices 

 

2.1.1    Important Notions and Definitions 

 

Definition 2.1 [3] 

A polynomial            over the body   is a matrix with elements 

polynomials where they have coefficients of  . Such a matrix is denoted  

 

         

             
             

   
             

     (2.1) 

 

where            . For a matrix                 and for a natural number  , 

we define 

           . 

 

We may represent the polynomial matrix      in the form of a matrix polynomial in 

 , i.e., in the form of a polynomial in   with matrix coefficients: 

        
     

              . 

 

Now we will see some important properties of polynomial matrices without 

attempting to generalize these properties to include all matrices with elements in a 

commutative ring.                                               

 

 The theory of elementary divisors, invented by Sylvester, H.J.S Smith, and, more 

particularly, Weierstrass, and perfected in important respects by Kronecker, 

Frobenious, and others. 

 

In particular, we now have: 

 

Definition 2.2 [12] 

The following three elementary row (column) operations on the polynomial matrix 

     with coefficients in   are defined 

(i) Interchange of rows (columns)   and  . 

(ii) Multiplication of row (column)   by a nonzero scalar in   (   ). 

(iii) Replacement of row (column)   by itself plus any polynomial multiplied by 

any other row (column)   (for example the      of any other row, for 

example the      multiplied by any arbitrary polynomial     ). 
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The operations (i), (ii) and (iii) are equivalent to a multiplication of the polynomial 

matrix      on the left by the following square matrices of order, respectively [13]: 

 

(i)    

 

  
 

      
   
    
    
   
       

  
 

 

 

 

(ii)     

 

 
 

     
   
   
   
      

 
 

 

 

 

(iii)      

 

 
 
 

      
   
       

   
   
       

 
 
 

 

 

In the same way, we define the right elementary operations on a polynomial matrix, 

the matrices (of order   ) corresponding to them are: 

 

(i)    

 

  
 

      
   
    
    
   
       

  
 

 

 

 

(ii)     
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(iii)      

 

 
 
 

      
   
   
       

   
       

 
 
 

 

 

Definition 2.3 [12] 

The rank   of a matrix  , denoted a     , is equal to the maximum number of 

linearly independent columns (or rows) of   over the smallest field   which contains 

the elements of  . 

 

Definition 2.4 [12] 

We introduce a concise notation for determinants formed from elements of the given 

matrix: 

 

                          
       
       

    

     
     

      

     
     

      

    
     

     
      

     (2.2) 

 

Definition 2.5 [14] 

A     polynomial matrix      is a matrix with entries that are real coefficient 

polynomials in  .  

A square (   ) polynomial matrix      is called nonsingular if          is a 

nonzero polynomial, and unimodular if          is a nonzero real number. 

 

 

Thus an alternative characterization is nonsingular if and only if              for 

all but a finite number of complex number   . And      is unimodular if and only if 

            for all complex numbers   . 

 

Between a matrix and its inverse we have that,        is unimodular if      is 

unimodular. Conversely if      and        both are polynomial matrices, then both 

are unimodular. 
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Example 2.1  

A. We have the matrix  

           
    

  

 

           . Since        is a nonzero real number, the matrix   is 

unimodular. 

B. We have the matrix 

   
    

    
  

 

          . Since        is a nonzero real number, the matrix   is unimodular. 

 

We study mostly systems which has rational transfer function. Let give the definition 

of a rational matrix: 

Definition 2.6  

Let      be the ring of polynomials with coefficients of   and      is the bode of 

rational functions over      

                  
    

    
                        (2.3) 

     is called the body of rational functions.  

Note: The elementary row and column operations where we can implement in a 

rational matrix are the same as in Definition 2.2. 

 

So, we have that every rational transfer function can be expressed as      
    

    
, 

where           are polynomials of  . The      can be classified as follows [21]: 

      proper                          = zero or nonzero constant. 

      strictly proper                          = 0. 

      biproper                          = nonzero constant.. 

      improper                              . 
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Note: Improper rational transfer functions will amplify high-frequency noise, which 

often exists in the real world; therefore improper rational functions rarely arise in 

practice. 

 

We introduce the concept of invariant polynomials of a matrix     . Since in the 

theory of 2-D matrix we distinguish between two types of invariants; those associated 

with isolated points of   .  

In 1-D theory, we have the factors and are described by Smith form. In 1-D case the 

Smith form can be obtained by pre- and post- multiplication by unimodular matrices, 

but this is impossible in 2-D case. We will see 2-D case later. Now let’s give the 

definition of invariant polynomials. 

 

Definition 2.7 [19] 

The      determinantal divisor      ,        of the matrix      is the greatest 

common divisor of the      order minors of     . The zeros of       are called the  

     determinantal zeros of     .  

Note: The set of      order determinantal zeros of a polynomial matrix      is 

denoted         . 

 

Definition 2.8 [11] 

We define         and we have  

                 
     

     
       

     

     
         

       

     
   (2.4) 

these are called invariant polynomials of the polynomial matrix     . 

 

Note : The characterization  “invariant” is due to the fact that polynomials            

                    remain invariant beneath equivalence transformations of     . 

This is also evident from (2.4) 

Theorem 2.1 [13] 

Let              with           ,            . Then      is equivalent 

with a diagonal matrix      
             where it has the form: 

                  
                                          (2.5)  
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and it is called Smith form of      in   where the polynomials                     

are not identically equal to zero and each of the polynomials               is 

divisible by the preceding. Moreover, it is assumed that the highest coefficient of all  

the polynomials               are equal to 1. 

Proof. Among all the elements        of      that are not identically equal to zero 

we choose one which has the least degree in   and by suitable permutations of the 

rows and columns we make this element into      . Then we find the quotients and 

remainders of the polynomials       : 

                                                       

(              ) 

If at least one of the remainders               (              ), for example 

      , is not identically equal to zero, then by subtracting from the      column the 

first column multiplied by       , we replace        by the remainder       , which 

is of smaller degree than       . Then we can again reduce the degree of the element 

in the top left corner of the matrix by putting in its place an element of smaller degree 

in  . 

But if all the remainders                                  are identically equal to 

zero, then by subtracting from the      row the first multiplied by       , (  

    ), we reduce our polynomial matrix to the form  

                                            

         

              
    
              

     (2.6) 

If at least one of the elements        (              ) is not divisible without 

remainder by       , then by adding to the first column that column which contains 

such an element we arrive at the preceding case and can therefore again replace the 

element        by a polynomial of smaller degree. 

Since the original element        had a definite degree and since the process of 

reducing this degree cannot be continued indefinitely, we must, after a finite number 

of elementary operations, obtain a matrix of the form 

 

  

        

              
    
              

    (2.7) 
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in which all the elements        are divisible without remainder by      . If among 

these elements        there is one not identically equal to zero, then continuing the 

same reduction process on the rows numbered       and the columns     , we 

reduce the matrix (2.7) to the form 

 

                                

 

 
 

         

         
               
     
                

 
 

    

  

where       is divisible without remainder by       and all the polynomial        are 

divisible without remainder by       continuing the process further, we finally arrive 

at a matrix of the form 

 

 

 
 
 
 

           

          
       
          
       
      
        

 
 
 
 

   

 

where the polynomials                     are not identically equal to zero and each 

is divisible by the preceding one. 

By multiplying the first   rows by suitable nonzero numerical factors, we can arrange 

that the highest coefficients of the polynomials                     are equal to 1.□ 

 

Example 2.2 

Consider the 1-D matrix  

      
  
  

  

where        ,      and     ,     . Hence the Smith form of   is given 

by : 

     
      

  
  

 . 
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2.1.2   Coprimeness of 1-D poynomial matrices 

 

 

Now we will see the notion of Coprimeness, which is one “only” in one dimension. In 

more than one dimensions, this changes and the one become two or three different 

notions as we will see in the next chapters 

. 

Definition 2.9 [21] 

Two polynomials are said to be coprime if they have no common factor of degree at 

least 1. 

 

Definition 2.10 [22] 

Let                        ,                    be such that  

               and                 

     is said to be a common left divisor  of      and     .      is said to be a 

greatest common left divisor  (gcld) of      and      if every other common left 

divisor      of      and      is such that               for some      

        . 

 

It is important to say that, if the gcld of      and      are unimodular, then      

and      are said to be left coprime. 

Note: Respectively, common right divisors and greatest common right divisor (gcrd) 

of                and               can be studied analogously. So, we have  

               and                 

and      is said to be a common right divisor of      and     . Clearly,      is a 

gcrd if every other common right divisor      of      and      is such that      

         for some              . 

Moreover,      and      are said to be right coprime if the gcrd of      and      

are unimodular. 

Computation of greatest common right divisors can be based on capabilities of 

elementary row operations on a polynomial matrix. To set up this approach we 

present a preliminary result. 
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Theorem 2.2 [14] 

Suppose      is a     polynomial matrix and      is a     polynomial matrix. If 

a unimodular             polynomial matrix      and an     polynomial 

matrix      are such that  

         
    
    

   
    

 
     (2.8) 

the      is a gcrd of      and     . 

Proof. Partition      in the form 

          
            
            

     (2.9) 

where        is     and        is    . Then the polynomial matrix        can 

be partitioned similarly as 

            
   

        
     

   
        

     
    (2.10) 

Using this notation to rewrite (2.12) gives 

 
    
    

   
   

        
     

   
        

     
  

    
 

  

That is, 

        
                  

          

Therefore      is a common right divisor of      and     . But, from (2.8), (2.9),  

                                 (2.11) 

so that if      is another common right divisor of      and     , say 

                                  

then (2.11) gives  

                                      

This show       also is a right divisor of     , and thus      is a gcrd of      and 

    .□ 
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To calculate greatest common right divisors using Theorem 2.2, we consider the three 

types of elementary row operations which referred in Definition 2.2. 

The below Theorem is the same as Theorem 2.2, but for greatest common left divisors 

(gcld) of      and     . 

 

Theorem 2.3 [14] 

Suppose      is a     polynomial matrix and      is a     polynomial matrix. If 

a unimodular             polynomial matrix      and an     polynomial 

matrix      are such that  

                             (2.12) 

the      is a gcld of      and     . 

 

Example 2.3 

For 

       
        
        

  

            

calculation of a gcrd via Theorem 2.2 is a sequence of elementary row operations. 
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This calculation shows that a gcrd is the identity, and      and      are right 

coprime. 

 

There are two different charactirizations of right coprimeness that are used in the 

sequel. 

Theorem 2.4 [14] 

For a     polynomial matrix      and a nonsingular     polynomial matrix     , 

the following statements are equivalent. 

(i) The polynomial matrices      and      are right coprime. 

(ii) There exist an     polynomial matrix      and an     polynomial matrix 

     satisfying the    called Bezout identity  

                          (2.13) 

(iii) For every complex number   , 

          
     
     

      (2.14) 

Proof. Beginning a demonstration that each claim implies the next, first we show that 

(i) implies (ii). If      and      are right coprime, then reduction to row Hermite 

form as in (2.8) yields polynomial matrices        and        such that  

                         

and this has the form of (2.13). 

To prove that (ii) implies (iii), write the condition (2.13) in the matrix form 

           
    
    

     

If    is a complex number for which  

     
     
     

    

then we have a rank contradiction. 

To show (iii) implies (i), suppose that (2.14) holds and      is a common right 

divisor of      and     . Then for some     polynomial matrix       and some 

    polynomial matrix      . 
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        (2.15) 

If         is a polynomial of degree at least one and    is a root of this polynomial, 

then       is a complex matrix of less than full rank. Thus we obtain the 

contradiction 

     
     
     

              

Therefore         is a nonzero constant, that is,      is unimodular. This proves that 

     and      are right coprime.□ 

 

Respectively, for the case of left coprimeness, we have the next theorem: 

Theorem 2.5 [14] 

For a     polynomial matrix      and a nonsingular     polynomial matrix 

    , the following statements are equivalent. 

(i) The polynomial matrices      and      are left coprime. 

(ii) There exist an     polynomial matrix      and an     polynomial matrix 

     such that  

                          (2.16) 

(iii) For every complex number   , 

                         (2.17) 

 

Definition 2.11 [12] 

A pair {            } ({           }) of polynomial matrices which has the same 

number of columns (rows) is said to be relatively right prime if and only if their gcrd 

(gcld) are unimodular matrices. 

 

Note: If two polynomial matrices may be relatively right prime but not left prime and 

vice versa. Above is given an example in which we can see that: 

Example 2.4 

Consider the polynomial matrices 
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and  

      
   
  

  

To find a gcrd       of      and      we reduce the composite matrix 

 
    
    

   

    
    

   
  

  

to upper right triangular form . 

It is clear that by multiplying the last row      of composite matrix by the 

appropriate monomial and adding the resultant expressions to the remaining rows, all 

other elements in the second column can be zeroed. The first column terms can also 

be set equal to zero, with the exception of an  , by employing an analogous 

procedure. Therefore, it is clear that  

       
  
  

  

is a gcrd of      and     . 

To find a gcld       of      and      we reduce the composite matrix  

             
      

      
  to lower left triangular form by adding the 

third and fourth column of the composite  matrix, we obtain the column vector  
 
 
  

which can be used to zero all other second row entries. The column vector  
  
 

  is left 

as the second column of the remaining matrix and can be used to zero the remaining 

first row entries. It is therefore clear that the two dimensional identity matrix is a gcld 

of      and     . 
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2.2  Equivalences in 1-D polynomial matrices 
 

2.2.1 Equivalence relation 

 

Initially, it is important for next chapters to understand better the notion of 

equivalence. In this chapter, we will define when we have an equivalence relation. 

Definition 2.12 [10] 

Let         and     the set of ordered pairs of elements in  . A subset    of 

     is called a relation on   and we write      if  the pair        . 

 

Definition 2.13 [10] 

A relation   is called an equivalence relation if 

1.      for all   in   (reflexivity) 

2.           (symmetry) 

3.       and           (transitivity) 

Whenever   is an equivalence relation on  , then 

                  (2.18) 

is called the equivalence class of   with respect to  , and the set            of all 

equivalence classes is denoted by    . 

 

Definition 2.14  

If   is another set then a function       is called invariant element of   when 

                  (2.19) 

So, the        is sn invariant element of   if all the elements     such that 

        have the same image through  . 

and complete invariant element of   when 

                  (2.20) 
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2.2.2 Unimodular Equivalence 

 

Definition 2.15 [13] 

Two polynomial matrices      and      are called 1)left-equivalent, 2)right 

equivalent, 3)equivalent if one of them can be obtained from the other by means of  

1)left-elementary, 2)right-elementary, 3)left and right elementary operations, 

respectively. 

 

Let      be obtained from      by means of the left-elementary operations 

corresponding to           . Then  

                     

Denoting the product             by     , we write (2.22) in the form 

                   (2.21) 

where     , like each of the matrices            has a constant nonzero 

determinant. 

In the case of right equivalence of the polynomial matrices      and      we shall 

have instead of  (2.21) the equation  

                   (2.22) 

 

And finally in the case of  equivalence we have the equation: 

                      (2.23) 

 

Knowing relations (2.21), (2.22) and (2.23) we say again Definition 2.13, a bit 

different: 

Definition 2.16 [13] 

Two rectangular matrices      and      are called 1)left-equivalent, 2)right 

equivalent, 3)equivalent(unimodular equivalence) if  

1)                 

2)                

3)                    



“Notions of equivalence of multivariate polynomial matrices” 
 

 
58 

 

respectively, where      and      are polynomial square matrices with constant 

nonzero determinants. 

Definition 2.17 [15] 

Two     polynomial matrices             are said to be unimodular equivalent 

(u.e) if there exist unimodular matrices            such that  

                           (2.24) 

 

Theorem 2.6  

The relation generated by (2.24) is an equivalence relation. 

Proof.  

a) Reflexive law: 

Let               . We have                  , which is valid. 

 

a) Symmetric law: 

Let                     polynomial matrices which are unimodular 

equivalent so we have                           such that 

                    , then we will have                        

                       , where                       because they 

are unimodular. 

 

b) Transitive law: 

Let                     unimodular equivalent matrices , so we have 

                           unimodular matrices such that  

 

                         (2.25) 

 

and                      unimodular equivalent matrices , so we have 

                             unimodular matrices such that 

 

                                       (2.26) 

  

from (2.26), we have 

 

                                                     (2.27) 

 

(2.25)
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where               and                        because they are 

unimodular. 

Consequently, unimodular equivalence is an equivalence relation.□ 

 

Note: Invariant polynomials and the determinantal divisors of a polynomial matrix 

             are defined uniquely, so the Smith form in   of a polynomial matrix 

is unique. Thus, we can define as an algebraic structure of a polynomial matrix in   

the structure of the Smith form in    of this matrix, which its characteristics are zeros 

of this polynomial matrix. 

It will be proved that the unimodular equivalence in   between two polynomial 

matrices       and                has the property retain: 

1. the Smith form in   of       and        

2. the invariant polynomials of       and       

3. the determinantal divisors of       and      . 

Proof. 

Let       and        be two equivalent polynomial matrices. Then they are obtained 

from one another by the means of elementary operations. But an easy verification 

shows immediately that the elementary operations change neither the rank of       

nor the polynomials                    . For when we apply to the identity (2.24)  

the formula that expresses a minor of a product of matrices by the minors of the 

factors, we obtain for an arbitrary minor of       the expression  

   
       
       

   

    
       
       

 
              

              

   
       

       
     

       

       
  

                   . 

Hence it follows that all minors of order r or greater of the matrix      , is divisible 

by                          . But the matrices       and       can exchange 

roles. 

Therefore      and       is divisible by   
                       . 

Hence 
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          . 

Since elementary operations do not change the polynomials 

  
       

         
    , they also leave the polynomials                     

unchanged. 

Thus, the polynomials                     remain invariant on transition from one 

matrix to another equivalent one. 

If the polynomial matrix has the canonical diagonal form (Smith form), then it is easy 

to see that for this matrix 

                                                       . 

But then, the diagonal polynomial in canonical diagonal form coincide with the 

invariant polynomials 

                                     . 

Here                     are at the same time the invariant polynomials of the 

original matrix      , because it is equivalent to canonical diagonal form. 

□ 
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2.2.3 Equivalence of Binomials 

 

We consider two square matrices      and       of order   in which all the elements 

are of degree not higher than 1 in  . These polynomials matrices may be represented 

in the form of matrix binomials: 

              ,               (2.28) 

We shall assume that these binomials are of degree 1 and regular, i.e. that       , 

      . 

 

Below is given a criterion for the equivalence of such binomials: 

Theorem 2.7 [13] 

If two regular binomials of the first degree        and        are equivalent, 

then they are strictly equivalent, i.e., in the identity 

                                (2.29) 

the matrices      and     - with constant non-zero determinants- can be replaced by 

constant non-singular matrices   and  : 

                        (2.30) 

 

Proof. Since the determinant of      does not depend on   and is different from zero, 

the inverse matrix             is also a polynomial matrix. With the help of this 

matrix we write (2.29) in the form  

                              (2.31) 

Regarding      and      as matrix polynomials, we divide      on the left by 

       and      on the right by       : 

                         (2.32) 

                         (2.33) 

here   and    are constant square matrices (independent of x) of order  . We 

substitute these expressions for      and      in (2.31). After a few small 

transformations, we obtain 

                                               . (2.34) 
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The difference in the brackets must be identically equal to zero; for otherwise the 

product on the left-hand side of  (2.34) would be of degree   , while the polynomial 

on the right-hand side of the equation is of degree not higher than 1. Therefore 

                    (2.35) 

But then we obtain from (2.34): 

                             (2.36) 

We shall now show that   is a non-singular matrix. For this purpose we divide      

on the left by       : 

                              (2.37) 

From (2.31), (2.32) and (2.37) we deduce: 

                                  

                                    

                                .    (2.38) 

Since the last term of this chain of equations must be of degree zero in x (because it is 

equal to E), the expression in brackets must be identically equal to zero. But then 

from (2.38) 

         .        (2.39) 

so that       and      . 

Multiplying both sides of (2.36) on the left by   we obtain: 

                 . 

The fact that   is non-singular follows from (2.39). That   and   are non-singular 

also follows directly from (2.30), since this identity implies 

        

and therefore  

                 . 

This completes the proof of the theorem.□ 
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2.2.4   Extended Unimodular Equivalence 

 

Firstly, we will see an important lemma, which will help us in the next theorem. 

 

Lemma 2.1 [18] 

Let the partitioned square polynomial matrix 

 

 
        
        

  

be unimodular, then  

(i)     ,      (respectively     ,     ) are relatively left prime. 

(ii)     ,      (respectively     ,     ) are relatively right prime. 

 

 

Definition 2.18 [18] 

Let        be the class of             polynomial matrices where   and   are 

fixed integers and   ranges over all integers which are greater than            . 

Let                    and consider the relation generated by  

 

                          (2.40) 

 

where    and   are relatively left prime and   and   are relatively right prime. 

 

 

Theorem 2.8 [18] 

The relation generated by (2.40) is an equivalence relation. 

 

Proof.  

(i) Reflexive law: 

In the first place the relation is reflexive, since (2.40) holds for      with   

and   identity matrices of the appropriate sizes.   and   thus have the correct 

relative primeness properties. 

(ii) Symmetric law: 

Secondly, for symmetry suppose,   and    satisfy (2.40), which may be 

written as 

 

            
 

  
      (2.41) 

 

Since     are relatively left prime there exist polynomial matrices    and     

(which are themselves relatively right prime), such that  
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          (2.42) 

 

Similarly, there exist relatively left prime polynomial matrices         such that  

 

               
 

  
         (2.43) 

 

Consider now the matrix pair       defined by  

 

                               
  

  
                (2.44) 

Then 

 

              
 

  
               

 
  

             
  

  
        

 
  

        (2.45) 

       ,from (2.43) and (2.41) 

 

Also, 

 

              
  

  
             

  

  
             

  

  
        

  

  
       (2.46) 

       , from (2.42) 

 

The relations (2.41), (2.42), (2.45) and (2.46) may be assembled as: 

 

  
   

    
  

   
    

   
      

     
           (2.47) 

 

But the two matrices on the left-hand side of (2.47) are both square and of the 

same dimensions. Consequently the one is the inverse of the other. Also, since 

both are polynomial, they are both unimodular. By the properties of an inverse 

 

 
   
    

  
   

    
   

     
      

  

 

From the (1,2) block equations we obtain: 

 

          
  

  
            (2.48) 
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Also by Lemma 2.1    and    have the correct co-primeness properties as 

required by the relation of Lemma 2.1, since  

 

 
   
    

   
   

    
  

 

are unimodular. Thus the symmetry of (2.40) is proved. 

 

(iii) Transitive law: 

Finally for the transitivity of (2.40) suppose: 

 

          

        
  
          (2.49) 

 

with the usual relative primeness properties holding. 

From the first of these equations, 

 

           

 

and substituting from the second gives 

  

           
             (2.50) 

 

It must now be shown that the required relative primeness conditions are met. 

From the relative primeness properties associated with (3.36), there exist 

polynomial matrices             such that 

                          (2.51) 

                          (2.52) 

From (2.51), 

                

i.e. 

         
      , from (2.49) 

Post-multiplying by    gives: 

           
            

                , from (2.52) 

              
                      (2.53) 
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(2.53)  thus proves that     and    are relative left prime. Similarly   and       are 

relative right prime, and transitivity follows from (2.50). This completes the proof of 

the theorem. 

Note: The equivalence relation generated by equation (2.40) will be called extended 

unimodular equivalence (eue). Note that the definition of eue contains as a special 

case the usual unimodular equivalence ue of polynomial matrices. Thus we have: 

 

 

Proposition 2.1 [18] 

Two polynomial matrices of the same dimensions that are ue are also eue. 

 

As a consequence of this result and Theorem 2.8 we have 

 

Proposition 2.2 [18] 

If two polynomial matrices in        are eue then so are their respective Smith form. 

 

Proof. Suppose     ,               are eue, then  

 

                (2.54) 

 

with the usual relative primeness conditions holding. 

 

Let          and           denote the respective Smith forms of      and       

respectively, then 

 

            ,                     (2.55) 

 

for unimodular matrices          . 

Using (2.55) in (2.54) gives  

 

                     

i.e. 

 

      
                     

      (2.56) 

 

Now   
     and        are relative left prime since 
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with the first and third matrices on the right-hand side being unimodular, and      

are relative left prime. Similarly,       and      
   are relative right prime, and so 

(2.56) proves the proposition.□ 
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2.3 2-D Polynomial Matrices 

 

In this chapter, we will see what it happens in 2-D polynomial matrices, where we 

have polynomials with two indeterminates. Are the notions the same as in one 

indeterminate? If they aren’t, what’s different? 

 

In 1- D theory, we saw that elementary matrices play a crucial role and they are 

subclass of unimodular matrices over a ring unimodular. Unimodular matrices can be 

formed as a product of elementary matrices. In this chapter, we will study systems 

with more than one variables, where not all unimodular matrices can be formed as a 

product of elementary matrices. This happens due to the absence of a division 

algorithm in              . 

The existence of a division algorithm for Euclidean polynomial rings forms the basis 

for the algorithmic derivation of many canonical forms and solution techniques at the 

heart of 1-D polynomial equations. In case of     progress is possible by noting 

that any polynomial ring can be regarded as a subring of a larger ring with a division 

algorithm. The exact mechanism is to favor one of the indeterminates and consider 

elements of the ring to be polynomial in this indeterminate with coefficients rational 

in the others. If, for example,    is the favored indeterminate the resulting ring is 

denoted                    .  

 

Consider the 2-D system matrix in the general form 

             
                

                 
    (2.57) 

where         ,         ,          and          are respectively      ,      , 

      and     polynomial, where           and          . 

 

Let          be an     polynomial matrix, then          can be written as: 

 

                                     
    (2.58) 

 

where       ,           are     polynomial matrices over       and  

                  (2.59) 
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Obviously, the  matrix          can be expressed in a similar fashion in terms of 

powers of   , i.e. 

                                     
    (2.60) 

 

where       ,           are     polynomial matrices over       and  

                  (2.61) 

 

Such as in Definition 2.2 for 1-D case, now we will present 2-D elementary row 

(respectively column) over the ring of two-variable polynomials, as we said, it is not 

Euclidean and there is not the direct dependence between the equivalence of two-

variable monomial matrices. 

 

Definition 2.19 [25] 

The following three elementary row (column) operations on the polynomial matrix 

         with coefficients in          are defined 

(i) the multiplication of the      row (respectively column) by the scalar     

(ii) the addition to the      row (respectively column) of the      row 

(respectively column) multiplied by the polynomial          

(iii) the interchange of the       and row       (respectively column) 
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2.3.1   Notions of Coprimeness  

 

In case of 2-D polynomial matrices are two distinct definitions, minor and zero 

coprimeness and in the case of     we have one more different definition, factor 

coprimeness. In the case of 2-D polynomial matrices the notions minor and factor 

coprimeness are identical. In this thesis, we will examine only the case with two 

indeterminates. 

 

Definition 2.20 [23] 

The matrices     in (2.57) are said to be minor left coprime (mlc) in case the     

minors of the compound matrix      have no non-trivial common factors in 

        . Similarly, the matrices     in (2.57) are said to be minor right coprime 

(mrc) in case the     minors of the compound matrix    

     have no non-trivial 

common factors in         . 

 

Lemma 2.2 [23] 

The following statements are equivalent 

(i)     are mlc 

(ii) Any polynomial factorization              with   being a square 

matrix, implies that   is unimodular over         . 

 

Definition 2.21 [23] 

The matrices     in (3.1)  are said to be zero left coprime (zlc) in case the compound 

matrix      has rank   for   for all values of the indeterminate pair         over 

  . Similarly the matrices     in (3.1) are said to be zero right coprime (zrc) in case 

the compound matrix     

     has rank   for all values of the indeterminate pair 

        over   . 

 

In 1-D system theory a polynomial matrix with rank degeneracies can be viewed as 

the product of two polynomial matrices, one with full rank and the other containing 

the rank degeneracies. Consider now a      2-D polynomial matrix      with 

   . Then there are three different notions of relative primeness for this matrix. 

These are termed minor and zero coprimeness and are defined as follows: 
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Definition 2.22 [16] 

Let      and      denote, respectively, an     and     polynomial matrix, 

       , and let  

                       (2.62) 

Then, the pair     ,      is said to be  

1. zero left coprime (zlc) if there exists no 2-tuple           which is a zero of 

all the     minors of     , 

2. minor left coprime (mlc) if these minors are relative prime, and 

3. factor left coprime (flc) if in any polynomial decomposition      

           in which       is square,       is necessarily elementary. 

 

Note: In dual fashion,     ,      are zero right coprime (zrc), etc if the matrix 

transposed pair      ,       is zero left coprime. 

► Transpose is a matrix where it has as columns the rows of matrix      and as rows 

the columns of     , for example, we have the matrix  

      

                   

                   
    

                   

  

and its transpose is the matrix  

       

                   

                   
    

                   

    

   ◄ 

 

Example 2.5 

This example demonstrates the different types of coprimeness for polynomial 

matrices over the polynomial ring         . 

 

(i) The greatest common divisor of the second order minors of the compound 

matrix        formed from the polynomial matrices  
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is equal to 1, we have six different second order minors and these are 

 

 
   
   

   
    

  
   

   
   

   
   

   
   

  
    

   
   
   

  

 

However, for the values            the compound matrix loses rank, 

and therefore    and    are examples of minor left coprime matrices. 

 

(ii) Finally the compound        formed from the polynomial matrices 

 

           
      

   

  
  

             
  

  
      

  

 

has the second order minor 

 
      

   

  
  

    

 which is equal to 1, and therefore     and    are examples of zero left 

coprime matrices. 

 

Note : Let             denote an     polynomial matrix in the   variables   , 

      , and let               . Suppose that                 where 

      and       are both polynomials. Then, for     it is not always possible to 

find two polynomial     matrices       and       such that               , 

      and  

                        (2.63) 

 

Theorem 2.9 [16] 

For     the three definitions are equivalent, i.e.              . For    ,  

            and for    ,             . Always              . 

 

Proof. That the three definitions are equivalent for     is well known 

[Rosenbrock,1970] and is directly attributable to the fact that every ideal of 

polynomials in one variable is principal [Vander Waerden, 1950]. Since the 

polynomials         and         possess to common zero         but are ely 
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prime, the zlc and mlc concepts differ for    . Nevertheless, it is proved in 

Theorem 3.3 that for    , a pair           is mlc if and only if it is flc.  

The proof of      is in Youla and Gnavi [16] . 

Furthermore, it is obvious that for all    , zlc   mlc   flc.□ 

 

Theorem 2.10 [16] 

1. The     and     polynomial matrices      and     ,         are 

zlc if and only if there exist two polynomial matrices      and      such that  

                             (2.64) 

2. They are mlc if and only if for every        , there exist polynomial 

matrices       and       such that  

                                   (2.65) 

where       is a nontrivial scalar polynomial independent of the variable   . 

Moreover, if      and      are real,     ,      and            ,       

       , can always be constructed. 

 

Before the Proof of the Theorem 3.2, we need the Cauchy-Binet theorem[13]: 

Suppose that a square matrix          is the product of two rectangular matrices 

        and         of dimension     and    , respectively: 

 

   

       

       

   
       

   

       

       

   
       

  

       

       

   
       

  (2.66) 

 

i.e., 

                
 
      (         )   (2.67) 

 

We shall establish the important Binet-Cauchy formula, which expresses the 

determinant     in terms of the minors of   and  : 
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              (2.68) 

 

 

According to this formula the determinant of   is the sum of the products of all 

possible minors of the maximal (    ) order of   into the corresponding minors of 

the same order of  . 

 

The Binet-Cauchy formula enables us, in the general case also, to express the minors 

of the product of two rectangular matrices in terms of the minors of the factors. Let  

        ,          ,         

(                       ) 

and     . 

We consider an arbitrary minor of  : 

   
       
       

   (               

                     ; 

                ) 

The matrix formed from the elements of this minor is the product of two rectangular 

matrices 

 

 

         

         

   
         

  

 

 
 

        

         

   
    

      

 
 

 

 

Therefore, by applying the Binet-Cauchy formula, we obtain: 

 

 

  
       
       

     
       
       

   
       

       
               

          (2.69) 
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The rank of the product of two rectangular matrices does not exceed the rank of either 

factor. 

 

Note: If      and                are the ranks of       then  

                      

 

Proof. (Theorem 2.10) 

1. Clearly, (2.64) guarantees that                  for all   and this 

implies that no                is a common zero of all the     minors 

of     . Thus (2.64) is sufficient for zlc. To prove necessity we employ a 

novel technique which succeeds in isolating each individual     minor of 

    . 

Let the pair          be zlc and let            
    denote the     minor of 

     formed with the given   rows and the   columns numbered 

          . From the Definition of zlc, these   
   

 polynomials are devoid of 

any common zeros and invoking a classical result due to Hilbert [Vander 

Waerden, 1950], there exist polynomials                such that  

 

                                        (2.70) 

 

In addition, the α’s can all be chosen real if all the Δ’s are real.  

Pick   to be any         real constant matrix whose     minors  

  
       
    

  are all nonzero, introduce     extra independent 

variables,              and let 

 

                                  (2.71) 

The polynomial matrix 

                         (2.72) 

 

is     and from Cauchy-Binet theorem,  

 

                 

                              
       
    

           (2.73) 

 

 Thus for every one of the                       , 
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

 

      

    
    

     

              (2.74) 

Let         denote the     polynomial matrix adjugate to       . Since  

                                   (2.75) 

multiplication of both sides of (2.73) on the right with          yields 

                                      (2.76) 

ΙIn view of , (2.74), (2.76) permits the identifications 

              
                     

         (2.77) 

where for all    , 

             
    

 

         
    

 


 

              

    
    

     

          (2.78) 

is         and polynomial. Finally, by combining (2.66) and (2.77) we 

reach the desired result (2.64), 

                                         (2.80) 

where  

                                         
    
    

         (2.81) 

An examination of the above procedure reveals that      is always real if 

     is real. 

2. Suppose that the pair           satisfies (2.65) for every        . Then, 

by Cauchy-Binet, the gcd of the     minors of        must divide 

every      . Since       is nontrivial and independent of   ,        , this 

gcd must be a nonzero constant and the   
   

 ’s are therefore relative prime. 

Hence,      and      are mlc. The necessity of (2.65) is also easily 

established with the aid of (2.77). 

By definition,      and      are mlc if the  ’s form a relatively prime set of 

polynomials. But then, according to another classical result [Vander Waerden, 

1950], for every         there exist polynomial                  such that 

              
                

                (2.82) 

where       is nontriavial and independent of   . 
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As before, the  ’s can be chosen real if all  ’s are real. Thus combining (2.77) 

and (2.82), 

                                           (2.83) 

 where  

                                            
     
     

    (2.84)□ 

 

As we said before, for case n=2 notions minor coprimeness and factor coprimeness 

are identically. Let’s see why this happens with the following Theorem: 

 

Theorem 2.11 [16] 

For    , a polynomial pair           is minor left coprime if and only if it is 

factor left coprime. 

Proof. Let the pair           be mlc but not flc. Then,                 

admits a polynomial decomposition                 where in       is square and 

non elementary. Since mlc implies that normal rank                 is a non 

constant polynomial which divides all the     minors of     , a contradiction.□ 

 

A set of polynomials             , in one indeterminate are said to be factor 

coprime provided there is no value         such that they are not identically zero. If 

such a value exists then          is a factor of all the polynomials in the set. In the 

case of    , this no longer holds and hence it is a necessary to distinguish between 

zero coprimeness and factor coprimeness. The following fundamental results, termed 

Hilbert’s Nullstellensatz. 

 

Example 2.6 

Consider the 2-D polynomial matrices given in part (i) of Example 2.5  

           
   
   

             
   
   

  

It can be easily verified that the following identities hold 
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which demonstrate the Bezout identities for minor left coprimeness. Now consider the 

two polynomial matrices given in part (ii) of example 2.5 

           
      

   

  
  

             
  

  
      

  

It can be easily verified that the following identities hold 

 
      

   

  
  

  
  

   
  

   
  

  
      

  
  

 
 

  

   
  
  

  

which demonstrates the Bezout identity for zero left coprimeness.  
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2.3.2  Invariant Polynomials and Zeros 

 

In 2-D matrix theory we distinguish between two types of invariants; those associated 

with factors of the matrix and those associated with isolated points of   . The factors 

have counterparts in 1-D theory and are described by the Smith form. In 1-D the 

Smith form can be obtained by pre- and post-multiplication by unimodular matrices, 

but in 2-D this is not possible and we adopt the alternative (and in 1-D equivalent) 

definition. 

 

Definition 2.23 [24] 

An     polynomial matrix          has Smith form: 

 

                                       

                                         (2.85) 

          
        

      
                

 

where          is a diagonal matrix having the invariant polynomials           as its 

non-zero elements. If the rank of   is   then there are   non-zero elements occupying 

the leading   positions and the remaining invariant polynomials are zero. Each 

          divides                    . The           are given by 

 

             
         

           
            (2.86) 

 

where             and           is the     of minors of order   in         . 

 

Invariant polynomials are unique modulo a multiplicative constant, each of which, in 

2-D, correspond to a matrix factor of         . Thus invariant polynomials can be 

factored out of the matrix. Invariant polynomials can be decomposed into irreducible 

factors, which we term invariant factors, each having an associated multiplicity and a 

number of degrees. 

 

Like we saw, for many reasons it is frequently necessary in systems analysis to 

transform a polynomial matrix to a simpler but equivalent form. One basic 

equivalence transformation in the 2-D context is zero coprime equivalent. But, before 

the Definition of zero coprime equivalent, firstly, we have to say something else[19]: 

 

There are various zero structures one can define for      , but all definitions are 

based on the property that zero is associated with a renk reduction of the matrix. 

The      determinantal divisor is unique module a multiplicative constant   

      and so this definition is the direct extension of the 1-D case where it 
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characterizes exactly the situation in which a 1-D matrix loses rank. The simple 

example              reveals the inadequacy of this definition for general n-D 

polynomial matrices. This matrix has         and so has no determinantal zeros, 

nevertheless      loses rank for        . We required a more encompassing 

definition. 

For any     n-D polynomial matrix     , let        denote an individual     minor 

of      where           
  

        
  

  

        
 . Denote the ideal generated by the 

    minors of      by   
   

 and write   
   

     
   

, where   
   

 is the ideal generated 

by the set of polynomials which result from the     minors of      when the      

determinantal divisor       is removed. Clearly each ideal   
   

 is generated by a set of 

factor coprime polynomials. This set, however, may not be additionally zero coprime 

which is the distinctive feature of n-D (   ), and the situation which the previous 

simple example              illustrates. These considerations lead us to the 

following definitions which find their origin in Zerz (1996). 

 

 

Definition 2.24 [19] 

The       order invariant zeros,        , of a polynomial matrix     , are the 

elements of     
   

 , the variety defined by the ideal   
   

 and they are defined to be  

  

                             

where          is the set of      order determinantal zeros of      and          is 

the empty set. 
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2.4 Equivalences in 2-D polynomial matrices 

 

In this chapter, we will see four different equivalences in 2-D polynomial matrices 

and some more results which arise. 

 

 

Definition 2.25 [24] 

                            
    are EO-EQUIVALENT (eoe) if one can be 

obtained from the other by a sequence of elementary row and column operations over 

        .  

 

 

Definition 2.26 [24] 

                    are UNIMODULAR EQUIVALENT (ue) if   unimodular 

matrices         ,          such that 

 

                                         (2.87) 

 

Elementary operations are the basis for computational developments. If           

(resp.          ) is the result of performing the elementary row (resp. column) 

operations on    (resp.   ) eoe can be written as  

 

                                           (2.88) 

 

                    of (2.88) are called ELEMENTARY. It is clear that elementary 

matrices are unimodular thus eoe implies ue. 

 

Note:  However unimodular matrices are not necessarily elementary, and so the 

converse is false. 

 

 

Definition 2.27 [19] 

Denote the class of              2-D polynomial matrices by       , where 

                                       are said to be ZERO COPRIME 

EQUIVALENT (zce) in case   polynomial matrices                   of 

appropriate dimensions such that 

 

                                       (2.89)  

 

with      zlc and      zrc. 
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Theorem 2.12 [27] 

The relation (2.89)  is an equivalence relation. 

 

Proof.  Let          
    and          

     two polynomial matrices (with     

   ) and let           and          polynomial matrices as to: 

  

                  (2.90) 

with      zlc and      zrc. 

 

 

i. Reflexivity 

 

Let         in  (2.90). Then      and    .  

If       and      then              and       . 

         zero left coprime and       zero right coprime. 

 

 

ii. Transitivity 

 

We suppose that 

 

                                                                                                             (2.91) 

                                                                                                       (2.92)    

 

The 2.91                     . 

 

So we need to prove that         are zero left coprime. Similarly we will prove that 

        are zero right coprime. 

 

  

 

iii. Symmetry 

 

                                             
     

  

  
                                            (2.93) 

                              

                                                     
  

  
                               (2.94) 

 

From (2.90) 
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                                  (2.95) 

 

Then  

 

                                          
   

     
  

    

    
   

   
   

                        (2.96) 

 

where               
      

 

now if we multiply from the left the (2.96) with 

 

 
   
    

  we have: 

 

           
   

    
 

       
 

 
    

    
 

       
 

  
   
   

                      (2.97) 

 

where       
        and           

 

Because              and              square matrices of the same size, which 

between them are inverse polynomials, they have to be invertible and to give 

 

                                                
    

    
 

       
 

 
   

    
 

       
 

  
   
   

                   (2.98) 

 

and the equations 

 

                                                                                                  (2.99) 

  

                                                                                 

                                     

                                                                                       

 

So from (2.98)         are zero left coprime and from (2.99)        are zero right 

coprime. 

 

So it is symmetric.□ 
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Theorem 2.13 [24] 

The two polynomial matrices      , of Definition 2.27 are ue if-f they are zce. 

 

Proof.  (zce   ue) The Bezout identities for left and right zero coprimeness are 

 

                
,              

   (2.100) 

 

Hence we can write 

 

    
   
    

  
     

    
   

  
  

     (2.101) 

 

where           . Postmultiplying (2.91) by the inverse of the matrix on the 

right hand side gives 

 

    
   
    

  
     

    
   

  
  

     (2.102) 

 

Hence the matrices on the left hand side are unimodular. Thus  

 

   
   
    

  
   

 

   
   

   
 

  
  

     

   
    (2.103) 

 

in which the first matrix on the left hand side is unimodular. Also 

 

 
  
  

  
     

   
  

    
  

   
  
  

  

 

and so the last matrix on the right hand side of  (2.103) is unimodular. Therefore 

(2.103) states that    and    are eue. 

 

(ue   zce) Assume that the following holds 

 

 
      

      
 

         
 

 
  
   

   
  
   

  
      

      
 

         
 

 

 

where   and   are unimodular. Writing this as  

 

 
        

        
   

      

          
  

 

Therefore             and  
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   ,     

        

      
  

 

Hence    and     are zlc otherwise   is not unimodular. Similarly    and     must 

zrc.□ 

 

Theorem 2.14 [19] 

Suppose that              of rank    and with dimensions              

     are Z.C.E. according to the relation (2.89). Then  

 

        
    

      
    

              (2.104) 

where              . For any          
    

     in case        or      
    

  

   in case       . 

Proof. 

Suppose that 1 1 1min( , )h p q
, 2 2 2min( , )h p q

 and let {1,2}i   and its complement    

in      be such that 'i i
h h

. 

Let 

                                  

'

'

0
( )

0 ( )

ii
h h

i

i

I
P z

P z

 
 
 
   

It is clear that the ideals generated by the various minors of '( ), ( )i i
P z P z

 are related as 

 

                                                

'

'

'

' 1

'

'

'

[ ] [ ]

[ ] [ ]

1

[ ]

[ ]

1

1

1

i i

ii

i i

ii

i

ii

i

P P

h h

P P

h h

P

h h

P

I I

I I

I

I












                                         (2.105) 

 

Now 
'( ), ( )i i

P z P z
 are Z.C.E. as either of the statements  
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   '0 ( ) ( ) 0
i iip qi

I P z P z I
 

 

                                                       

'

0 0
( ) ( )

i i

i i
p q

P z P z
I I

   
   

     

confirms. Hence from the transitivity of Z.C.E. relation it follows that '( ), ( )i i
P z P z

  are 

Z.C.E. 

We establish the theorem for '( ), ( )i i
P z P z

 which are of identical dimensions. 

Let 
' 'min( , )h p q  then from the coprimeness requirements of Z.C.E.   polynomial 

matrices ( ), ( ), ( ), ( )X z Y z W z Z z  of appropriate dimensions such that 

 

                                               

'

'

'

1

'

2

p

q

MX PY I

WP ZN I

 

 
                                   (2.106) 

From (2.89) and (2.104) it follows that 

 

                                       

'

'

'

2

'

1 0

q

p

I JW Z P X

M P IN Y

    
                             (2.107) 

 

where J WX ZY  . 

 

For any matrix Q let 
1

1

,...,

,...,
k

k

i i

j jQ
 denote the k k  submatrix formed from rows 1,..., ki i

 and 

columns 1,..., kj j
. Consider then the following equation formed from (2.107) 
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,..., ,...,1 1
1

1 1

'
1

' ',...,
2 ,..., 2 ,...,

'

1 ,...,

0

0

i i i ik k
k

k k

k

i i
j j j j

j j p

A B

P X P XE

M P N Y I

   
          

              (2.108) 

 

where  1 k h   and 
1 ,..., ki i

E  is the matrix whose , tht s  element is  1 if ts i
 and  zero 

otherwise. 

 

Take determinants of both sides of (2.108), and use the Cauchy-Binet theorem to 

expand the left hand side. This gives 

                                     

,...,' 11 '

'
1 ' 1

,...,
1,..., '

,..., 2 ,...,1,...,

i ik
p k

kp k

m m
p k

m m j jp k
m

A B P








                    (2.109) 

Now the form of A indicates that any factor of A of the type occurring in the left hand 

side of (2.109) for which  1{ , ..., }ki i
 is not a subset of 

'1{ ,..., }
p k

m m
  is zero.  Thus all 

minors of A which occur in the left hand side of (2.109) contain the columns 1{ ,..., }ki i

. Such a factor is then expressible via Laplace expansion in terms of products of 

minors of  M  και  
'

1P
 . Thus  

, . . . ,1

1

'

2 , . . . ,

i ik

kj jP
 is expressible as a linear combination  of 

minors 
'

1P
 of order k  and greater.  

Since any minor can be expanded in terms of lower order minors, it follows that   
,...,1

1

'

2 ,...,

i ik

kj jP
can be written as a linear combination of the order k minors of 

'

1P
. It thus 

follows that

' '
2 1[ ] [ ]P P

k kI I
 , 1,...,k h  

whre 
' 'min( , )h p q . 

By the symmetry property of the Z.C.E. relation 
' ' ' ',p q q q   polynomial matrices 

' '( ), ( )M z N z  such that 

' ' ' '

1 2M P P N
, 

 

where  
' '

2( ), ( )M z P z
 are zero left coprime, and  

' '

1 ( ), ( )P z N z
 are zero right coprime.  

Applying the same procedure as above gives 
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' '
2 1[ ] [ ]P P

k kI I
 

where  1,...,k h . Hence 

' '
2 1[ ] [ ]P P

k kI I
  για 1,...,k h . 

Let {1,2}i   and its complement    in      be such that 'i i
h h

. It follows from the 

above and the relation (2.105) that in terms of the original matrices             we 

have 

 

'

'

'

' 1

'

'

'

[ ] [ ]

[ ] [ ]

1

[ ]

[ ]

1

1

1

i i

ii

i i

ii

i

ii

i

P P

h h

P P

h h

P

h h

P

I I

I I

I

I












     (2.110) 

 

Now since             we have  

 

   

  
  

 
        

  
  

  
  

  
  

 
          

  
  

  

  
  

 
. 

Hence  

 

               

 

and so the relation (2.110) reduce to 
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'

'

'

' 1

'

'

'

[ ] [ ]

[ ] [ ]

1

[ ]

[ ]

1

1

1

i i

ii

i i

ii

i

ii

i

P P

r r

P P

r r

P

r r

P

I I

I I

I

I












 

 

which completes the proof. 

□ 

 

Corollary 2.2 [24] 

Suppose that two polynomial matrices       are related by Z.C.E. then the invariant 

zeros are related by  

                        (2.111) 

where              , q            ,              . 

Proof. [28] 

Since            are zero right coprime and             are zero left coprime there 

exist polynomial matrices                and Z(x) of appropriate dimensions such 

that  

 

          
 

(2.112) 

          
 

From (2.89) and (2.105) it follows that 

 
   
   

  
   
   

   
   

 

    

  

where        . Now, replace       with      which gives  

            
  
   

  
   
   

   
  

                 

    

 .              (2.113) 
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where, in the case       (and hence      ) the constant matrix       
 is the unit 

matrix    
 with       zero columns to form a       matrix         

 correspond 

to the rows of the matrices    and   selected by multiplication by  . 

For any matrix   let         

        denote the     submatrix formed from rows         

and columns        . Consider the following               submatrix formed 

from (2.113) 

 
             

   

  
         

 

         
 
   

   
                

                       

       

    

  . 

(2.114) 

Take determinants of both sides and using the Cauchy-Binet Theorem, (2.114) shows 

that  

             

        
           

          
      

        
       

       
 . 

Noting that         
 are arbitrary, and by considering all combinations of the 

columns of          and the form of  , it can be seen that the only non-zero minors are 

those involving columns         of the first block column. Such a factor can then be 

expressed via the Laplace expansion in terms of minors of   and   . The smallest 

minor of    occurring in the Laplace expansion is of order      , where q 

            and              . Therefore the minors of    of order   are linear 

combinations of the minors of    of order      . Hence the determinantal 

divisors of       and       are related by the equation  

                  

and letting       gives  

                  

In an analogous manner it is possible to write  

 
   
   

  
   
   

   
   

          

            

  

and therefore it can be deduced that the determinantal divisors of       and       are 

also related by the equation  

                  

Again letting       gives  
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Therefore the following is true  

                          (2.115) 

Now since the determinantal divisors are equal this implies that the invariant zeros 

must also be equal, giving  

                         (2.116) 

which is the required result. 

□ 

Note: So we see that invariant polynomials and invariant zeros are invariants of 

Z.C.E. 

 

 

Definition 2.28 [26] 

                           are said to be FACTOR COPRIME EQUIVALENT  

(F.C.E.) if there exists polynomial matrices                   such that  

 

                      
         

         
       (2.117) 

 

where the compound matrices 

 

                                    
         

         
    (2.118) 

 

are factor coprime i.e. if all the              (resp.            ) minors of 

                     (resp.  
         

         
 ) have no polynomial factor. 

 

 

Corollary 2.3 [27] 

Suppose that two polynomial matrices                     with sizes       and 

      respectively and            , are related by a polynomial equation of 

the form 

                                          (2.119) 

where                     are              polynomial matrices and 

                    are minor right coprime,                     are minor left 

coprime. 



“Notions of equivalence of multivariate polynomial matrices” 
 

 
92 

 

(i). Let Let   
             

               
          , where              , 

denote the invariant polynomials of the polynomial matrix           and 

  
             

               
          , where p             denote the 

invariant polynomials of the polynomial matrix           then  

    
          

   
  for                       

where    
     ,   

       for             . 

(ii). Let   
             

               
          , where r            , denote 

the invariant polynomials of the polynomial matrix           and 

  
             

               
          , where               denote the 

invariant polynomials of the polynomial matrix           then  

    
          

     for                       

where    
     ,   

       for             . 

Proof. 

Since                     are minor right coprime and                     are 

minor left coprime there exist polynomial matrices                        

                    for i=1,2 of appropriate dimensions such that  

                   

for i=1,2  (2.120) 

                   

where               are polynomials. From (2.119) and (2.120) it follows that  

   
    
     

  
    

     
   

          
         

    (2.121) 

where             . Now take i=1 and replace  
  

   
  with  

 
 
 . Then (2.121) 

gives 

       
    
     

  
   
    

   
          

    
    (2.122) 

For any matrix   let         

        denoted the     submatrix formed from rows         

and columns        . Consider the following             submatrix formed 

from (2.122) 
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        (2.123) 

Take determinants of both sides and use the Cauchy-Binet Theorem and (2.123) to 

show that   

                      

       
          

         
            
    

           

        .        (2.124) 

Now the form of B indicates that any factor of B of the type occurring in the left-

hand-side of (2.124), for which               is not a subset of             is 

zero.  

Thus all the non-zero minors of B which occur in the left-hand-side of (2.124) contain 

the rows            . Such a factor is then expressible via Laplace expansion in 

terms of minors of    and   . The smallest minor of    occurring in this Laplace 

expansion is of order      . Therefore if   
   

        for         denotes the 

greatest common divisor of the     minors   , it follows that  

          
   

   
           

                   (2.125) 

where       
   

   if        . 

If then   
   

        for          denotes the greatest common divisor of the     

minors   , it follows from (2.125) and the fact         and         are arbitrary that 

          
   

   
   

   
.     (2.126) 

On the other hand if we take     then the same argument shows that  

          
   

   
   

   
             (2.127) 

Statements (2.126) and (2.127) then imply since       are factor coprime  

      
   

   
   

          

or, on writing      , 

       
   

     
   

                        (2.128) 

where, if necessary,   
   

  ,   
   

   for    . 

Now in (2.121) replace        with       to give  

    
   

     
  

    

     
   

    

     
 .    (2.129) 
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The same argument surrounding (2.122) may now be used in the case of (2.122) to 

show that 

       
   

     
   

                     .   (2.130) 

Statements (2.128) and (2.130) then yield, modulo a constant non-zero factor, 

      
               

                                (2.131) 

Now   
             

           are the determinantal divisors of          , 

          respectively, and so from the relationship between the determinantal 

divisors and their invariant polynomials the result (i) follows. 

In the case of           and            the argument presented above will carry 

through with some minor modifications. Specifically, in the case     for example, 

the equation corresponding to (2.121), for      , is  

    
    
     

  
   
   

   
      

       

        
    (2.132) 

where the constant matrix      is the unit matrix    with     zero rows to form a 

    matrix and         correspond to the columns of the matrices    and    

selected by multiplication by  . The analogue of  (2.122) is obtained by selecting 

rows         from the second block row and columns         from the second block 

column. By considering all combinations of the rows of         
 and the form of the 

second matrix on the right-hand-side of (2.125), i.e. the only non-zero minors are 

those involving rows         of the first block row, it is seen by taking all      

       and             that  

  
   

   
   

   
 

where    
   

  
   

 are the greatest common divisors of the     order minors of 

         ,           respectively. Also by considering     

  
   

   
   

   
. 

Therefore, by similar reasoning surrounding (2.128) 

  
   

   
   

 for         . 

Now the equation corresponding to (2.129) is 

 
  
     

  
    

     
   

         
  

       

     
  

where   and         are defined in (2.132). Thus the result 
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 for          

is obtained by a similar discussion to that following (2.125). Therefore 

  
   

     
   

 for          

where          for         and (ii) is established. 

□ 

Note: So we see that invariant polynomials are invariants of M.C.E, since 

M.C.E. F.C.E. in 2-D polynomial matrices, the invariant polynomials are also 

invariants of F.C.E. 
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