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INEPIAHYH
2y mapoHoa SIMA®LLOTIKY EpYyacio YiveTtol LeEAETN TOV GVGTUATOV OAyeBpikdV
eElomoemv dopopdv mov Ppickovrol otn popen AR-representation, dniadn otn popen
A(0)B(k) =0, 6mov A(o) e R[o]™" ko oB(k) = S(k +1) . H epyasia sivar yopiopévn e 8§00
Hép.
270 TPATO HEPOG LEAETALLE TIC AVCELS TOV GVGTNUATOV OAYERPIK®OV EIGDCEMV
dpop®V, 01 omoieg ympilovtar oe OVO PEYOAES KATNYOPIES, TOL GVVIEOVTAL LLE TOVG

TEMEPOCLEVOVS KO TOVG ATEPOVS CTOLYEIDOEIS OOUPETEG TOV GVGTILOTOS AVTIGTOLY 0.

210 0€VTEPO UEPOG HELETALLE TO avTioTpOoPo TPOPANLa. Exyovtag dedopuévn
GULUTEPLPOPA EVOG GUGTNLOTOG, VO, KOTAGKEVAGOVLE TOV TTivako A(G) M®OTE VoL IKAVOTTO el TN
doouévn cvumeppopd. Aivovpe £va Bempnua Tov cvvdéet T backward cupnepipopd £voc
ovotiuorog pe v forward cvunepipopd Tov dvikov tov. Aivovpe emmAiov 300 neBod0vg

KOTUOKEVNG €VOG cvothuatog pe dedouévn forward kon backward copenpipopd.

AEZEIX KAEIATIA

TOAVMVLLIKOT TIVOKES, KOATOOKEVT) GUGTHLOTOG, CTOYXEUDIELS OLNPETEG, EEICMOELS OLPOPADYV,

ypoupkd cvomua, Cevyn Jordan, xpovooeipic, LOVIEAOTOINGT GLGTAUATOC.
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ABSTRACT

In the present Thesis we study the forward and backward-impulsive behavior of systems
of algebraic difference equations in the form of AR-representations, that is A(c)B(k) =0, where
A(o) e R[o]™ and op(k) = B(k +1) . This paper consists of two parts.

In the first part we study the forward and backward solutions of AR-representations,
which are depended upon the finite and infinite elementary divisors of the matrix A(c).

In the second part we study the inverse problem. That is, given a given behavior, how to
construct a system that satisfies it. First, we give a theorem connecting the backward behavior of
a system to the forward behavior of its dual system. We also present two methods of constructing
a system with a given forward and backward behavior.

KEY WORDS

polynomial matrix, forward behavior, backward behavior, Jordan pairs, elementary divisors,
solution space, linear system, difference equations, system modeling, time series.
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CHAPTER 1
PRELIMINARY RESULTS

Let R be the field of real numbers and Rs] be the Euclidean ring of polynomials with
coefficients from R. The field of all mxn matrices with elements from R[s] is denoted by
]R[s]mxn. A matrix whose elements are polynomials is called a polynomial matrix and can be
expanded as follows:

AS)=AS"+A s+ + A eR™ ;A eR™ A #0
The number qez* is the highest degree occurring among the degrees of all the polynomial

elements of A(o).

Example 1: The matrix

-1 s?+3

A(s) = [

s$+2s°+1  ¢§° (1 0y (2 1)y (1 0
=S +S +
-1 s°+3 10 0 1) (-1 3

— —_ Y
A Ay A

428241 2 J

can be expanded as

(]

Definition 2 [Vardulakis 1991]: The degree of a polynomial matrix T(s), denoted by degT(s) is

defined as the maximum degree among the degrees of all its maximum order non-zero minors. [

Definition 3 [Vardulakis 1991]: A matrix T(s) e R[s]"™" is called unimodular, if there exists a
T(s) e R[s]™ such that T(s)T(s) = 1., or equivalently if detT(c)=ceR . 0

Definition 4 [Vardulakis 1991]: A matrix T(s) is called proper rational matrix if all its elements

are proper rational functions or are equivalently in the form % n(s),d(s) e R[s] with

deg(d(s))=>deg(n(s)). We candenote this by T(s) e R}, (s).[]

pr

13
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Definition 5 [Vardulakis 1991]: A matrix T(s) e R{ .. (s) is called R  (s)-unimodular or

proper

biproper rational matrix if there exists T (s) € R0, () such that T(s)T(s)=1, or equivalently
iff deg[detT(s)]=0.

N

Defition 6 [Vardulakis 1991]: Elementary row and column operations on any polynomial

matrix T(s) e R[s]™" are defined as:

e The interchange any two rows or columns of T(s).
e Multiplication any row or column of T(s) by a non-zero constant from R .
e Addition to any row(column) of T(s) another row(column) multiplied by any polynomial
w(s)
]

We are going to study the solution space of systems of difference equations that are in the

form of an (Auto-Regressive) AR-representation, that is
A(o)p(k)=0 1)
where k €[0,N —q], or equivalently
ALK+ +ALBK+q-D)+...+ A)B(k)=0
and
A(o)=Ac" + Aq_lo'CH +..+ Ao’ e R™[o] )]

is a regular polynomial matrix, ie. det[A(c)]=0 for almost every o, B(k)eR™, ke[0,N]
and o denotes the forward shift operator of(k) = S(k +1). The number q is also called the lag of

the systemand it denotes the maximum number of time shifts.

Example 7: The difference equation x(k +2)—x(k +1)—x(k) =0 which describes the famous
Fibonacci sequence can be written in AR formas

o?x(K) — ox(K) = x(k) =0 —>.
(0°—o-1)x(k)=0—
A(o)x(k) =0 0

14
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We define the behavior B of (1) as B={B(k):[0,N]—R"™|(1) is satisfied vk [0, N]
Notice that we are interested in finding the behavior of (1) over a specified finite time interval

ke [0, N ] though N is considered to be large enough.

Definition 8 [Vardulakis 1991]: Let A(c) be an rxr regular polynomial matrix. There exist

unimodular matrices U, (o) € R[o]™",U, (o) € R[c]™ such that

Saey (0) =U_ (0)A(0)Ug (o) =
—blockdiag[L,...,1, f,(c), f, 1(0),.., f, ()]

with 1<z <r and f,(0)/ f,,(0) Fzzt1,....,r. Sy, (o) is called the Smith form of A(c).

i+1
Proof: Among the entries of A(c), we find a non-zero one, which is a polynomial of the lowest
degree with respect to o and by interchanging rows and columns we move it to position (1,1).

Denote this entry by &,(c). Assume at the beginning that all the entries of the matrix A(c) are
divisible without remainder by @, (o). Dividing the entries &,(c) of the first column and the
fistrow &;(o) by a,(c) we obtain

a,(o)=a,(0)q, (o) F2,....r

a,;(0) =a,(0)q; (o) 2,01
where ¢, (o) and ¢,;(o) are the quotients of the divisions.

Subtracting from the i-th row (i = 2,3,...,r) the first row multiplied by q,(c) and,

respectively from the j-th column (j = 2,3,...,m) the first column multiplied by ¢,;(c) , we obtain

a matrix of the form

a¢) 0 - 0
0 ap(o) -+ a(o)
0 ar2 (O-) “' grr (G)

If the coefficient by the highest power of s of polynomial &,(c) is not equal to 1, then to

accomplish this we multiply the first row (or column) by the reciprocal of this coefficient.
Assume next that not all entries of the matrix A(s) are divisible without

remainder by a,(o) and that such entries are placed in the first row and the first

15



Modeling Of Discrete-Time AR-Representations

column. Dividing the entries of the first row and the first column by @, (o) we obtain
a;(0) =a, (o) (0) +1; (o) F2,....r1
a;, (o) =a,(0)q;,(0) +1;,(0) =2,...,1

where q,(0),d;,(o) are the quotients and (o), r;,(o) are the remainders of the divisions.

Subtracting from the j-th row (i-th column) the first row (column) multiplied by q;, (o) (by

0, (o)), we replace the entry &;,(o) (a;(c)) by the remainder r;,(o) (r;(c)).Next, among
these remainders we find a polynomial of the lowest degree with respect to sand interchanging
rows and columns, we move it to the position (1,1). We denote this polynomial by T, (o) . If not
allentries of the first row and the first column are divisible without remainder by T, (o) , then we
repeat this procedure taking the polynomial T,(o) instead of the polynomial a,(c). The degree
of the polynomial T, (o) is lower than the degree of a,(o) .After a finite number of steps, we
obtain in the position (1,1) a polynomial that divides without remainder all the entries of the first
row and the first column. Ifthe entry &, (o) is notdivisible by &, (o) then by adding

the i-th row (or k-th column) to the first row (the first column), we reduce this case to the

previous one. Repeating this procedure, we finally obtain in the position (1,1) a polynomial

that divides without remainder all the entries of the matrix. Further we proceed in the same way

as inthe first case, when all the entries of the matrix are divisible without remainder by &, (o).
If notall entries &;(o) (=2,...,r j=2,...,r) of the previous matrix are equal to zero, we

find a non-zero entry of the lowest degree among them and by elementary row and column
operations we bring it to position (2,2). Proceeding further as above we obtain a matrix of the
form
a, (o) 0 0 0

0 a,, (o) 0 0

0 0 ag(o) - (o)

16
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where a,, (o) is divisible without remainder by &, (o) and all elements &;(c) (i=3.4,...1;j=
3,4,...,r) are divisible without remainder by &, (o). Continuing this procedure, we obtain a

matrix of the Smith canonical form. 0

Polynomials f,(c) are called the invariant polynomials of A(s). The zeros s, € C of

f;(s) eR[s], j=zztl,...,r are called finite zeros of A(s). Assume that the partial multiplicities of

eachzero s, €C, iek are 0<n,<n, ., <..<n. ie

iz — "iz+l — 7t —
f.(s)=(s—s)" f,(s),J=zzt1,...;r; f,(s)=0
The terms (s—s;)™ are called finite elementary divisors of A(s) at S=S,. We also denote by n
the sum of the degrees of the finite elementary divisors of A(s), i.e.
r kK r
n:= deg{H fj(s)}:ZZniyj
j=z i=1 j=z

Similarly, we can find U, () e R™,U,(c) € R™ having no poles and zeros at o =4, such that

Sk.(0) =U,(6)A(0)Uq (o) =blockdiag [ L1,....1, (o 4)™ . (6~ 4)"™* .. (0~ A)" |

Sk, (o) is called the Smith form at the local point o=/

Lemma 9 [Vardulakis 1991]: The previous algorithm to compute the Smith form of a

polynomial matrix A(s) can be summarized in the following steps. By doing biproper row and

column operations, follow the next:

Step 1: Move the element with the lowest degree to position [1,1].

Step 2: Reduce all elements of the first column to zero.

Step 3: Reduce all elements of the first row to zero.

Step 4: In case non zero elements appeared on the first column, go back to Step 2.

Step 5: Incase the element [1,1] does not divide all the elements of matrix A(s), then go back to
Step 1.

0
Step 6: We will end up with a matrix of the form [‘2 B (s)j . Go back to Step 1 and do the
1

algorithm again with B, (S) as the initial matrix.

17
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Example 10: Consider the matrix

-7 7]

There exist U, (c) e R[c]*?,U,(c) e R[&]** such that

AR o ey

Si(o) (0) UL P Ug

We have defined the finite elementary divisors with the help of the Smith form of A(oc).
Now we will define the infinite elementary divisors of A(c). To do so, we first need to introduce

the Smith form at infinity and the dual polynomial matrix of A(c).

Definition 11 [Vardulakis 1991]: Let A(c) be an rxr polynomial matrix. Then there exist
biproper matrices U, (o) e R',"(s),U (o) € R (s) suchthat

r

U, (0)A(6)Uq(0) = 5%, () = blockdiag (O'U“,...,aqk, L i}

ol 5
where
0, =0,=...20, =0
G =d,,=...G,.,20
Sx (o) is called the Smith form of A(c) at infinity. The first k terms ..., q, are the poles and
the latter (r-k) terms §.,,...,q, the zerosat o= of A(c). O
It is proved in [Vardulakis, 1991] that g, =(Q .

There is a simple and pretty straightforward way of finding the Smith form at Infinity ofa

matrix. It is handy because it avoids performing row and column operations on a matrix A(S).

Definition 12 [Vardulakis 1991, Jones 1998]: Let g(s)z%eR(s) where n(s),d(s) e R[s],

d(s) =0 and define the mapping &, () : R(s) - Z U {+»} such that

18
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This mapping is defined as a discrete valuation of R(s). O

Lemma 13 [Vardulakis 1991, Jones 1998]: Let A(s)eR™", rank(A(s))=r and denote

&(A) eZ asthe least J,(-) ofall minors of A(s) of order i, where & (A)=0. Thendefine
G, = é:o(A) _él(A) = _gl(A)
g, = 4§1(A)—§2(A)

qr = é:r—l(A) _fr (A)
The Smith format infinity of A(s) is given by

Sy (0) =blockdiag (s* s* ... s* 0, ..,)
]
. . s s+l _
Example 14: Consider the matrix A=( L J. Define
S —
é:o(A) =0
&(A) =min{-2,-1,0} = -2
& (A) =min{-4} =4
so we have that ¢, =0—(-2)=2,0,=—2—-(4)=2 so
. s 0
SA(o‘) (O-) :( 0 82]
U
Definition 15 [Vardulakis 1991]: The dual polynomial matrix of A(c)eR"™ is defined as
A(o) = an(i) =Ac'+AcT +..+ A (3)
(o2
U

Let U, (o) e R[6]"",U.(c) e R[c]™" be rational matrices having no poles and zeros at 6=0 such

that
$2.,,(@)=U, (6)A(c)U, (o) =blockdiag [ 6,5 ...,c" |

19
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S/‘{(U) (o) is the Smith form of A(c) at zero. The terms o™ are the finite elementary divisors of

A(G) at zero and are called the infinite elementary divisors of A(c). We denote by p the sum of

the degrees of the infinite elementary divisors i.e.

=D
i1

The connection between the Smith form at infinity of A(c) and the Smith form at zero of the dual

matrix is

© 1 1 M2 Yk +~k+1 +0r
S, () :aqu(a)(E) =blockdiag|[1,6% %, ..., 0%, 0% . o¥% |
So the orders of the infinite elementary divisors are given by
=0

/,zj.:quqj j=k+1..r

Lemma 16 [Gohberg et al 1982]: Let A(c)=Ac’+A 0" +..+ A e R™[o]. Let also nu

the sum of degrees of the finite and infinite elementary divisors of A(c). Then
N+u=rxq

where q is the highest degree among all the polynomial entries of A(c). O
Jordan Pairs

Let (Csi eR™,J, eR”‘X“‘) be a matrix pair, where J_is in Jordan form, corresponding to

the zero s; of A(c)of multiplicity n,.This means that J_ consists of Jordan blocks with sizes
equal to the partial multiplicities of ;. This is called an eigenpair of A(c) (or a Jordan pair)
corresponding to S, iff

C

S:

C,J,

e rank =n, or equivalently written as

Csi J ; ni-1

20
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1

rankcol (C, J.* ):;0 =n,

e ACJI."+A CJI "+ .+ACJ +AC, =0 orequivalently

qupxcs;]s,k =
k0
Taking an eigenpair for each finite eigenvalue s, of A(o) we can create the finite spectral pair
of A(o) (Cr eR™,J. eR™) , where
C: =[C..C,,...C.] ; J. =blockdiag[J,,J,,....J,]

The finite spectral pair of A(o) satisfies the same properties as the eigenpairs of A(c) e.g.
K\Ni-L q K
rankeol (C.J:) " =n, > AC.J.*=0
k=0

An eigenpair of the dual matrix A(a) corresponding to the eigenvalue §=0 is called an infinite

spectral pair of A(c) and satisfies the following

rankcoI(Cwak):;:y, ZAkC J,0 =

k=0

An algorithm for the construction of a finite Jordan pair was given in [1].

Theorem 17 [Vardulakis 1991]: Giventhe matrix A(c) € R™ we can construct a finite Jordan
pair by following these steps:
Step 1: Compute the unimodular matrices U, (o) e R[o]™,U, (o) € R[o]™" such that
Spo (@) =U_(0)A(0)U, (o)
Step 2: Let u;(0)eR™ jer be the columns of Ug(o) and u{®(c)=(d*/d")u;(o).

Compute the vectors

i ql ui?(o;)i=12,.

1.4

where j=zz+1,...,rand 4=0,1...,n; -1 and o; are the zeros of A(c) with partial multiplicities

0<n,<n 2<n .

|z+1— = r

Step 3: Define the matrices

21
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Cy=|Bio Bu = Bin,. By ]eR™

A1 0 0
Jij= oo e RMW
0 B |
0 0 .. 0 4
and
Ci = I:Ci,z C:i,z+l Ci,r:l € fomi

J, =blockdiag[ J;, 3, JeR™

i,z+1

where m =n,, +n ., +--+n,

Step 4: The pair (C,J) where
c=[C, C, - C.eR™

J :=blockdiag[J, J, - J.]eR™

and n=m, +m,+---+m, =deg (H f, (0')] is a Jordan pair of the polynomial matrix A(oc).

j=z

Example 18: Consider the matrix

Alo)= [Zﬂ :+1J

We can find matrices U, (c) € R[c]*?,U,(c) e R[c]** such that
Sf(o’) (0)=U_(0)A(c)U¢(0)
1 0 ) (1 0)fst1 s° |(3s°-s+1 -s°
0 (s+1)?) \s+1 1J(0 s+1 -1 s+1
Sk A(o)
Aoy (0) o

so the matrix has one finite elementary divisor with multiplicity 2.

22
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—S

3
Let ul® :( ] be the second column of U, (o) that corresponds to the zero at s-1. Compute

s+1

the vectors

1 1
flo=5u? (D)= [Oj and

v 1w, _(-35° (-3
ﬁl,l_l!ul ( 1)_E 1 jszl_(l]

. . . 1 1 1 _3 _1 1 . ..
So the matrix pair (C,J) with C=C, =(ﬂ1,o ﬂl’1)= 0 1 and J=1J, = 0 1 is a finite

Jordan pair of A(s). We can easily check that it satisfies:

1 3
C 0 1
rank| . |=
CJ -1 4
0 -1

ACJ®+ACJI*+ACI] +A°C:(8 8j

23
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CHAPTER 2

SOLUTIONS OF DISCRETE TIME ALGEBRAIC DIFFERENCE
EQUATIONS
In this chapter we will study the connection between the finite and infinite elementary divisors
and the behavior of a system of difference equations. More specifically, we will see how f.e.ds
are connected with the forward behavior of a system and how i.e.ds are connected with the

backward behavior. These results have been previously studied and presented by Gohberg in
1982 and Karampetakis in 2004.

Finite elementary divisors and solutions of discrete time AR-representations

Let us assume that A(c) has « distinct zeros A, 4,,...,4_ where for simplicity of notation
we assume that 4 € C, i=12,...,x and let
Sy (0) =U_ (0)A(c)U, (o) =blockdiag[11,....1, f,(0), f,.,(0),..., f.(0)].
Assume that the partial multiplicities of the zeros 4 €C are 0<n,<n, <..<n, ie.
f(0)=(c-2)" f,(0) jFzz+l,...,r with f(4)=0. Let u;(c)eR[c]™ ,jeR be the

columns of Ug(0) and ui¥(c):=(8"/d5°)u;(0), q=0,1,...,n, ., . Letalso

X!

1 ] )
i :=au§q)(ﬂ,,) i€l,2,..,x and j=zz+1,....r.

Define the vector valued functions
[

) . . k .
& o (€)= A% + KA oy ¢ (qji it 4 20

&K= 80X +8K-DX .+ S(k—aq)xi, if 4 =0
iek; j=zztl,....r; q =01...n

where by 3(k) we denote the known Kronecker delta function. Let

Y= 8000 G, &, 00 &, W]

| i i i i
o .—[leo Xjz = Xin,, xjvnuJ

24
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A 1 0
0 A 0

N I A 1
0 0 A1
0 0 0 4

where 1=12,...,x,j=zz*1,...,rand
PE)=[ ¥, Woak) - Wk L]
CT=[C.(K) Ciouk) - Cu(k) C(K)]
J3F =blockdiag[ J;, (k) J;,..(K) - I ,(K) I, (K)]
Finally let
YRk =[Wr k) Wi(k) - WE,(K) WE(K)]
CP=[Ci(k) CJ(k) - CL,(k) CI(K)]
3¢ =blockdiag| Jf (k) 37 (k) - I7,(K) If(K)]
The solution space of the system (1) is:

B = (w2 (0) = (2 (32)')

. . 2 -1
Example 19: Consider the matrix P(o) =(G o J. It’s Smith form is
(o2 O —
oO)= =
A 0 0(0—1)2 1 —o*+o-1)loc o-1)\1 -o
U (o) Ug (o)

o
The second column U, (o) :(

) corresponds to the finite elementary divisors ¢ and (o —1)°.

Thus 4, =0 with o,, =1 and 4, =1 with o,,=2.

1 _ 1 o _(0-1) (-1
o= buo-{"2)-(

for the first zero of A(c) and for the second zero of A(c):

We have:
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. 1-1) (0
- ur-()-(2)

o-10\" (1
ﬂ21 _u(l)(ﬂ-z) ( J :( j
- ), -1
Create the pairs

(€. 3) = (B o):[(‘ol] (o)} and (CZ,J2)=[(/322,0 ﬂil),@ 3}[(3 jlj(é m

Now we create the matrices

00O

-1 0 1
Ce =(C, Cz)=[0 3 _J and J7 =blockdiag(J, J,)=|0 1 1
0 01

We also define the functions
Bro= (‘01] 5() > ¥, (k) = ([‘01]5(10]
(54
(EHEHE)
Y, (k) = , +k
- 0 1), 0 1 -1){-1 -1
(0

-1 -1 -1

v} 1)

So the solution space of A(c)B(k)=0 is spanned by the vectors:

WR(Kk) = (¥, (k) ¥, (K))= [(_OlJ 5(k),(_11}[_1k_ kD -cP(3p)

Infinite elementary divisors and solutions of discrete time AR-representations

Let U, (o) e R™,U,(c) e R™" be rational matrices having no poles and zeros at c=0
such that

$?.,,(0) =U (06)A(c)U, (o) =blockdiag| ", 6,...,c" | =
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=blockdiag [l, o, ..oV % gk ot ]

Where S? (o) is the Smith form of A(0) at zero. Letalso Uy (o) =[0,(c) 0,(0) - G, (0)]

where T,(c)eR(0)™ and G(c), A”(c) be the i-th derivatives of @ (o) and A(c)

respectively, for =0,1,..., 4, and jer. Define

X :=%U§‘)(0) for i=0,1,..., ., and jer. Then for initial conditions
S(N) X |
¢(N-1) :

E(N-qg+1) Xq,-1

we obtain respectively the linearly independent backward solutions

£2,(K) = X, S(N —K) + X, ;6N = (K +1) + .t X, (SN = (K +1)) =0,L,..., 11,5 jer

Let
PR = 00 k) &, () &, (]
Cf‘:[xj,0 Xis XJ#,J
0 1 0 0]
001 0O
Jp=[t ¢ ot HeRY™ where jer and
0
L 0 -
We(k)=[PP() Wouk) - PP
Co(k)=[CP(k) CPu(k) - CP(K)]
Jg (k) :=blockdiag[ 30 (k) J2,(k) - IP(K)]
where

p= U
-1

The solution space spanned by the i.e.d. of (1) is
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N -k
B = (2(9) =(cg (92)"")

Example 20: Consider the polynomial matrix

Its dual matrix is
2
A(O'):O'ZA[lj: O-+02 O
o 1+0° 140

and has the Smith form at zero

0 1
30—10—1 -1\(oc+0® © 2
A@) T o2 - l1+0 -oc/\1+6? 1+0 1 _l_,_lo-
Ug
1
2

Therefore A(o) has a zero at =0 of multiplicity 2. Let 0,(c)= be the second

e oy
2 2

column of U, . Define

1
1. 2
X20=au2(0): _1
2
0

1.
X21:ﬂuél)(0): E
2

and
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|
|
N |-

01
30 =
(o o

The solution space BY is spanned by the columns of the matrix:

1
= 0
D _[AD (1D \NK\ 2 6(N —k) §(N_(k+1)) =
lPB(k)—<CB(JB) >— 1 1( 0 S(N —k) ] -
2 2
1 1
8N k) 50(N-(k+1)

1 1 1
—OIN=K) | | 2 8(N=(k+D)+Z5(N k)
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CHAPTER 3

CONSTRUCTION OF ASYSTEM OF ALGEBRAIC DIFFERENCE EQUATIONS
WITH GIVEN FORWARD/BACKWARD BEHAVIOR

In this section we are going to study the inverse problem i.e. givena specific forward and
backward behavior, how to construct the polynomial matrix A(c), so that the AR-representation
A(c)B(k)=0 has the given behavior. On this subject we already have results regarding the
forward behavior but there are no results concerning the backward one. It must be mentioned
though that the analog problem for continuous time systems has been examined in [2]. We will
first present and produce results concerning the forward and backward behavior separately and

then we will study the case where both a forward and backward behavior is given.

Theorem 21 [Gohberg 1982, Karampetakis 2004]: Suppose that a finite number of functions
of the form

i K Voee & k)
LK) = ﬁ*.kﬂqi,i +k/11k lﬂqifl,i +...+(k_qij/1.k qlﬂo,i :,-Z_(;(k—qi + leuk ¢ J:Bj,iv A #0

(ﬂj,qj (k) =5(K)X; 4 1 +IK=2)x;, o4 8(k=(0;-0) %0, [ 4 = o])

are given, where f;; € C, 0<j<q and i=12,..,1. Let

A1 0
0 4 1 0 0

C :=|:ﬂ0,i ﬁl,i ﬂqi—l,i ﬂqi,i]eRk(qim’ Ji = : P P e RUDGE
0 0 2 1
0 0 .. 0 A4

and
[J, 0 0
0 J 0
c=[C, G, C., CleR™ J= ? e R™

0 0 J,

|
where n:=>"(q, +1)

i=1

Let a be a complex number different than 4, and define
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A(e)=1,-C(I-al,)* {(c-a)V, +(c-a)*V,, +..+(c—a)"V,

C
where q=ind(C,J) and [V, V, - V,] isthe generalised inverse of S, , = ¢ _:al”)l
c@ —.aln)l-q
Then f.(k) are solutions of A(c)B(k)=0. Furthermore, g is the minimal possible lag of any
nxn matrix with this property.

What we need to mention here is that although we created an AR-representation that has
the solution S (k), the vectors S (k) does not necessarily span the whole solution space of

A(o). This depends on the dimensions of the matrix pair (C,J). According to Lemma 16, the sum
of the ie.ds and the fe.ds is n+u=r-q. This means that in order for a pair (C,J) to fully
describe a system, in terms of its finite and infinite elementary divisors, it must be of dimensions
nxrg and rgxrg. So in case that the matrix pair has these dimensions, then the vectors £, (k)
span the hole solution space of A(c). But in any other case, the system will exhibit some extra
linearly independent behavior. This holds true for all the algorithms for construction of a system

with given behavior that will be presented in this paper.

For ananalytic proof of Theorem 21, one may refer to [Gohberg et al, 1981].

Example 22: We are looking for the matrix A(c), knowing that the solution space is

1
N (4) (1 2 2 "
BE=( |02 |1]2"+|0|k2" [3[2"+ % k2“+| 0 |(k*~k)2" ). Doingsome
0 1 0 2 1 0
2
calculations we can rewrite it as
2 4 2 2 4 2 (k1
BE=(|0|2% [1]2+|0 k2" |3[2%+|1|k2**+|0 —( 2_ )2"‘2
0 1 0 2 1 0

So now it’s easier to see that
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2 4 2
Buk)=|3 |25 +| 1 |k2 +| 0 [k(k —1)2*2
2 1 0
Bro B Bro

Define
2 4 2 2 1 0
C=C :(181,0 ﬂl,l 181,2): 0 13,J=021
01 2 0 0 2

We now must find g=ind(C,J). We can see that det(C)=-2=0, so g=1.

13 5

2
V,=C*=l0 -2 3

0 1 -1

For a=1%2 we have

Ao)=1,-C(J-11,) " (o -1)V, =

1
10 0) (2 4 2)1 1 o)* > 3 D a6 2042 4o-4
:010—013011(0'—1)0—2320 1 l-o0
0 01 0 1 2)l0 0 1 0 1 -1 0 oc-1 -20+3
10 0
with Sy, =0 1 0 |. The pair (C,J) is a finite Jordan pair for the matrix A(c) that
00 (6-2)7°

we created, because indeed it satisfies the 2 properties of a Jordan Pair, which are

~1 =2 4)(2 4 2\(2 1 0) (2 2 -4)(2 4 2) (0 0 O
ACI+AC=/0 0 -1]l0 1 3|0 2 1{+/0 1 1|0 1 3|=[0 0 ©
0 1 -2)lo 12002 (o -13)Jlo12loo0o0
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C,
3 C
Of course, the first property rank| * ° =n,, (in this example rank| CJ |=3) is always
CJ?
Csi\]si n-1

satisfied, because it is a necessary condition in the creation of the matrix A(o).

Example 23: We are looking for the polynomial matrix A(c), with solution space spanned by

() GG

We can see that f,(k) = (_11j+@]k

By Bro

1 1 11
C:(ﬂl,o ﬂl,l):(o _jand‘]:(o J

Now we must find q=ind(C,J). We can see that det(C)=-1+0, so g=1
L (11
V,=Ct=
0 -1
A(0)=1,-C(J-21,) " (c-2)V,=
1 0) (1 1)-1 1\" 1 1) (o-1 2-0
= — (0'—2) =
0 1 0O -1){L0 -1 0 -1 0 o-1
with Smith form
1 0
Sf(cr): 2 |
0 (-1

Just by looking at the Smith form we can be sure that our algorithm works, but we can also check

P

Define

For a=2=1 we have

that that the finite Jordan pair (C,J) satisfies

R A E R AT
© AGIHA _Lo 1)(0 —J(o 1}
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)
e rank =2
CJ

Example 24: Let

3 2 1 3

x(k)=| 3 [6(K)+| 1 |s(k-D+| 2 |[6(k-2)=|3 5(k)+% 1sk-+ <KD 5 1s5k-2)
2 3 -1 2 3 -1
X2 X1 X10 X2 X1 X0

We want to find an AR-representation that has x(k) as its solution. We begin by creating the pair

1 2 3 010
C=2 1 3|,J=/0 0 1
-1 3 2 0 00

Now we must find the lag of the matrix. We know that g=ind(C,J).
Since detC=0, the assumption that g=1 is rejected.

Let g=2, the matrix

1 2 3

2 1 3

C C -1 3 2

S = 2_1 = =\
CJ CJ 0 1 2

0 2 1

-1 3

has full column rank, so q=2. Let a=1 and compute A(c) by

A@)=1,-C(J-1,)" {(c -1V, +(c-1)°V,}

345 465 15 37 331 897

2656 2656 1328 | 664 2656 2656
c Y| 497 23 599 | 61 115 761
c@ —1)1] 2656 2656 1328 | 664 2656 2656
65 1 75 | 19 5 169

664 664 332 ' 166 664 664

where (V, Vz)z(
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A(o)=
1007 +1382s + 267s?  —1324+16575—333s%  —1641+ 4635 +1178s’
2656 2656 2656
2143+ 2458s — 3155 428+ 2999s —771s?>  11(—117+675+50s")
2656 2656 2656
i(—eg —218s +2875”) i(lse — 2835 +1275%) i(243—37s +458s)
664 664 664

The system generated by the equation A(c)B(k)=0 has indeed the solution we want. We can
check that (C,J) is a Jordan pair of A(c) corresponding to the f.e.d. zero, because

000 C
ACI?+ACI+AC=|0 0 0|;rank| CJ |=3
000 cJ?

Onthe other hand, if we take the determinant of matrix A(c), we see that
det(A(0)) = —2i2803 (-331+1030).

The determinant as we know has the same elements as the Smith form of A(c). This means that

. . 331
our system has an extra solution corresponding to the f.e.d. o =—

103
That is the reason we cannot state that x(k) canspan the whole solution space of A(c).
Based on theory (Lemma 16 and [Gohberg et al 1981]), in order for the matrix pair (C,J)
to contain of the spectral information for A(c)p (k)=0, it must be of dimensions:
C:rxrg=3x6
J:rgxrq=6x6
So what one can do in order to control the behavior of the system, and not let it be arbitrarily

created, is to create the pair

-~ O

.C:

N -
w N
N W W
Q o o
> o T
o OO O o
, OO O O

o o > |lo o o
o, Rk |lo o o

o O OO O B+
o O O|0O +—» O

A

and add a behavior of our choise. Of course there are other possible forms for J, like
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A 0 0 A 0 0
0 4 1lor|0 4 0

0 0 4, 0 0 A4
Another way to create a system matrix A(c) having x(k) as the only behavior, we need to
choose the right value for a.
Using Mathematica, we compute the pseudoinverse matrix, but now considering ‘a’ (named ‘b’

in Mathematica) as a variable. The string of commands for these computations in Mathematica is

c={{3, 2,1}, {3, 1, 2}, {2, 3, -1}}

1={{0,1,0} {0, 0,1}, {0, 0, 0}}

MatrixRank[ArrayFlatten[{{c}, {c.j}}]

m = ArrayFlatten[{{c}, {c.MatrixPower[j - b IdentityMatrix[3], -1]}}]

m1 = Simplify[Pseudolnverse[m], b \[Element] Reals]

vl = Take[m1, {1, 3}, {1, 3}]

v2 = Take[m1, {1, 3}, {4, 6}]

a = ldentityMatrix[3] - c.MatrixPower[j - b IdentityMatrix[3], -2].((s - b) v2 + (s - b)*2 v1) // Simplify

The result of this computation is too long to be presented here. We

proceed to compute the determinant of A(O0).

Det[a] // Factor

which gives the result

g3 (88+11]b +132b% —37s —66bs)
2b° (44+37b+33b2)

In order for our system to have only zero as an i.e.d. the quantity
—37s—66as must be zero, thus
Solve[-37s-66 bs==0, b]

37
Ho— (o

Starting the algorithm again and evaluating A(c) for the new value of a (b in Mathematica) we

finally get
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Alo)=

9739771035-16744593164s -1477832928s° 37259417249 - 669500444205 —869238084s” 41279469321+ 725126899845 — 19995466925
-9359753063 198822453345 - 5683972800s°  —28649926839 - 862692629005 - 3343223400s° 57014519853+ 973901990545 — 76905642005’
-5219970989 - 59336418265 + 6025011168s° 8084696581 124346654805 + 3543816804s° 19957001355+ 68792782065 + 81519980525

with det(A) =-10.6-10°s?, which means that the only f.e.d. is zero.

We shall now extend this theorem to the case of backward solutions.

As we have already shown, the smith form of the dual matrix of A(c) at zero is
$3..,(0) =U (6)A(c)Uq (o) = blockdiag (1w, ..., wi wh o, . wid )
— A(0)0,(0) =V,(aIW" 22,1
#;=09-4d;, j=2,...k ; u;=0q+q;, j=k+1,...,r and U,(o),v,(c) are the j-th columns of

U.(c) and U, (o)™ respectively.

Lemma 25: Let G (c), AP(c) be the i-th derivatives of d,(c) and A(c) with respect to o
for #0,1,..., »; and j=2,...,r. The vectors X;; aswe have already seen, defined by:

1., . .
X ::ﬁug)(O) for =0,1,...,q+q, -1 and j=2,...,r.

form Jordan Chains corresponding to A(a) and thus satisfy the conditions

A(0)x;, =0
A'(0)x;, + A(0)x,, =0

4)

1

—_— 0
(q+qj_1)!

ATIH0)X;o +...+ A(0)X

jo+g;-1

Proof: Since UR(a) has no poles or zeros at w=0, l]j(O) #0 and for w=0

A(0)d;(0) =0, j=2,...1 (5)

taking the first derivative of (5) with respect to w we have
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AP (w)d; (w) + AT (w) =v{ (W)w' +v, () g w" ™ which for w=0 gives
AP(O)I;(0)+AQ)IP(0)=0, =21

In the same fashion, we take the derivative of the above equation and evaluate the result for w=0.
We obtain:

A®(0)a, (0)+2A (0)a" (0) + A(0)d$? (0) =0 —
AP(0)x,,+2AD(0)x,, + A(0)x,, =0 j=2,...1

Continuing this procedure until the (q+q; —1) derivative of (5) we obtain the equations of our

lemma. O

Now from (3) we can easily get that
AP () =p!A_,  p=l2,..9
AP(0)=0 pP=0+L..,q+0; -
So the equations (6) of lemma transform to

A(0)x;, =0
AP(0)x,,+A(0)x;, =0

1 1 ) ~
——Ammﬂw+(_4yA“”®ﬂm+m+Amﬂm=0
1

A(q)(O)le-i- A(q‘l)(O)xJZJr +AD(0)x, . +A(0)X, 4, =0

1
(q-1!

1
SRR

lA@() LR, + ot ADO)X g+ AO)K, g4 =0

ja+q;-1

for j=2

These equations can be summarized in matrix form as
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A, 0 O 0 0 0 0 0 io
A, A O o 0 0 0 0 i
: : : : : : : : : 0
A A A A A 0 0 0 X,
0 A A A Aa A 0 0 Xieu 0
: oo Tl : : .0 :
0 o - '% A1 Az '%71 Aq Xj,q+qj—1
-
Theorem 26: The vector g7 (k)= X qiq;- 10N =K) X 10 20(N—K=1)+...4X; (N -k =0 +1) (7)

is a solution of the AR-representation A(c)p(k)=0 iff

Bi(K)=X%,,0(k=q-q; +D) +Xx,,0(K-=q—0q; +2) +---+X 5(k—q)+---+xjvq+qu§(k) (8)

ja;-1

is a solution of the dual homogenous system A(c) (k) =0

Proof: (=) First assume that (7) is a solution of (1), then the equations (6) hold true. We will

show that (8) is a solution of (3), i.e.

A(0)p(k)=0
. or equivalently, taking the Z-transform, that
A@)(2) =b(2)

where b(z) is defined by the initial values of BK),

B(z):(qur 27, - zlr)
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~ ~ _ —-0—-q;+1 -0-q; +2 —
:A(z)ﬂ(z):(zqﬁbﬂq A +-~-ZA1_1+A1)(XLOZ T X,z et Xy g2 +"'+Xj,q+qj_1)=
A O 0y
A1 Ao . j.a+q;-1
: : .0 y
. : : i
0 0 - A Ko
A 0 0 [ Xiara2
= A1 AO X qrq;-2
=(z%, M, - oz) T
(21, 2%, 20,)| . : 0 S
Aa Ae = A x,
Al A\q—l . Ab 0 0 Xj,q+q,-fl
0 A - A A
0 0 DU : 0
_ _ ——j—l . . —
+(Ir z, 279, 27 Ir) A AL Al x, |
w0 A :
0 S x,
0 0 0 Al x,
A, 0 0 [ Xja+q,
. A A A Xiava,2
=(z%, 2% )| o
(Z ro L r Zr) : 0
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A, 0 0 0 0O 0 0 O «
A, A O 0 0 0 0 of M
0 O 0
w2, all L) AR A A X;
A A A Aln A O 0 v
0 A A A, Ax A 0 0
: . ‘. . . 0 Xj,l
X.
0 0 A A A Aa A 1o
=0 (6)
A, 0 0 [ Xja+q;1
Sl X e .
= (2, 2, - 1l Ai A° . M2 p(2)
Ah—l 'Ah—z Ao Xqu
So we have that
A 0 - 0 %o A 0 0 Ig(o)
] A A T X _ A A BQ)
1 §.q+q; _ 1
(21, 2, z1,) L g E =(z, M, - a,) S g E
Aa A A xg, An An o A B@E-D
This equation holds true, because from the way we have defined BJ. (k) , we can see that
B(0) =X, 50+ %;, 044X 0o 16(0) =X 4.0 4

B;)=0+..+x o1-D)+..+0=x

J,9+q;-2 1.0+09;-2

B;(@-1)=0+..+ xj'qjd(q—l—q +D)+..+0= Xjq,

Thus, the right and left side of the equation are equal, so ﬁj (k) is a solution of A(c)B(k)=0.

(<) Now we will show that if A, (k) is asolution of A(c)A(k)=0,then B; (k) is a solution of

A(o)B(k)=0.

N
We will apply the Z-transform g(z) = > B(k)z™.

N
Z{Bk+1}=> Bk+Dz*. Letk+1=mand we have
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> Ak+Dz* = pmyz ™ =
- ziﬂ(m)z‘m +(N+Dz N =
=7B(2)+ S(N+Dz7 "
Likewise, we have
Z{Bk+2)}=2"B(z)+ SN +D)z """+ S(N+2)z7"
Z{Bk+0q)} =2"B(z)+ BN +D)z """+ .+ B(N+q)z"

So applying this transform to the equation A(c)S;" (k) =0 we have
Z{A(0)B; (K)}=0—
(AZ'+A 27 +..+ Az+ A))(xj’qmj_lz’” ot leoz_m‘“qj_l) =—f(z) >
where A(z) is the initial conditions vector and is equal to:

A Aa o ANBT(N+q)
2 -N ~N+1 ~N+g-1 0 Ax Az :
ﬂ(Z)Z(Z z e L ) : : . : ﬂr(N-i—Z)

0 0 - AJIB(N+D
The values B (N+0),.....5 (N+1) are defined outside our given interval, but since
A(c)B(k)=0

o> ABK+q)+ A BK+g-D)+..+ABK+D)+ABK)=0
for k=N-g+1,...,N we have:
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B (N-qg+1)

: : 0
AT AL s

N )

More analytically:

For k=N —qg+1 we have:
ALBIN+D+A L BN)+...+ AB(N-g+1)=0—
ABN+1) =—(A_B(N)+..+ ABN—-q+1))

For k=N-q+2 we have

ABNN+2)+A BN +1) =—(A_B(N)+..+ ABN-q+2))

Continuing in this fashion we eventually have that

A AL - A)B(N+Q)
0 A - :

P _(5-N —-N+1 -N+g-1 AZ . _
p=(z" 2™ ) BN+ |
0 0 - AJBIN+Y
A A AL (BIN-g+D)
:_z‘N(zq‘1|r ...... |r) O AO .: Alﬂ :

0 0 - AJL BN
Now considering the left side of the equation:

(AZ A2+ Azt Ao)(xj,qmj-lﬂ +---+XJ,OZ_N+q+qj_l) =-h@)~>
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A, 0 O 0
A, A O 0
A A o T T T T X0
0 A .o T Tl Tl X
N q+o+q;-1 it - N
27|z I, zZl, |, 0 0 0 0 : =—f(2)
g+g+q; . .
: . ‘. Ab Ai AZ Aq Xj,q+qj—l
0 0 . | A o AL
0 0 0 O 0 A,
j,0
The part above the line multiplied by ’1 equals the zero vector, as we know from (6).
Xin*'qJ'—l
So we end up with:
Ay A AL Kias
0 . .
27N (27, 2, 1) Ab , A“:‘Z =g =
0 0 Ab j.a+q;-1
A A A et
0 X
=" (2%, 2, 1) . & 2 e
0 0 - A X; grq 4
A A A A7 (N-q+])
0 : :
=z M(2%M, e )] o A .
I By (N-1)

0 0 - A B (N)

This equation holds true because
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0(0)+0+..+40=x

ja;-1 ja;-1

B (N-q+1)=0+0+...+X

By (N)= xj,q+qj_15(N —N)+x O(N-N-D+..+X,,6(N-N-gq-q; +1) =x
— Y =0

=0 -0

j,9+q;-2 j.a+q;-1

which means that the left and right hand of this equation are equal, thus

Z{A(e)B; (k)} =0 = A(0) 3} (k) =0 so the vector
B k)= xquj_lé(N —K)+ X 4 20(N=1-K)+...+X; ,6(N —q—q; +1-k)

1,95-2
is a solution of A(c)B(k)=0.
O

This Theorem tells us that the problem of finding a system in the form of (1) that has as a
solution the vector

By (K) =X, grq 16N =K)+%; .0 50N =(K+D) +...4 X o 5(N = (k +0; —1))

j,9+q;-2

is equivalent to the problem of finding a system of the form of (3) having as a solution the vector

ﬁj(k)=xj’05(k—q—qj +D)+X,0(k=q—=0; +2) +---+ X, ,0(K=)+---+X o(K) .

iha;-1 j.9+g;-1

However this problem can easily be solved from the results we already have. These facts give
rise to the following:

q+q;-1
Theorem 27: Let S (k) = z X;,0(N—-w-k) where each X;, isavector in C", 1< j<w<r.
w=0

Define

ijz(xjvo Xii " Xiga X Xia X

jvq+qj71)

where j=1,2,...,1 and let

e R*#
0 0 - J

|
with J; the Jordan block of order 4; =q+0; with eigenvalue 0 and ,uzz;zj .Let a#0 bea

j=1
complex number and define
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A(@)=1,-C(J-al,)*{(c-a), +(c-a)’V,, ++(c-2a)V,|

where gq=ind(C,J) is the least integer such that the matrix

C
CJ . .
Sei=| . |hesfullcolumnrankand V =(V, V, - V,) isthe leftinverse of
cJet
C
C(d-al,)" |.
Siq= : ie. VS_ =1,.
c(J-al )™

Then B; (k) j=1,,2,...,1are solutions of the equation A(c)B(k)=0 where A(c) = o-qf\(i) :
(@2
Furthermore, q is the minimal possible degree ofany r xr matrix polynomial with this property.

[

Example 28: Suppose that we want to find out a polynomial matrix A(c) such that the AR-

representation has the following solution

1 1 1
LK) =] 0 |[6(N=K)+| -1 |S(N—k-1)+| 0 |5(N—(k+2))
1 1 -1

X2 X1 X0

which means we have g+0, =3. Assume first that g=1. Then we can construct the matrices

1 1 1 010
C=(%p %, X.)=| 0 -1 OjandJ=|0 0 1
-1 1 1 0 0O

The matrix C has det(C)=-2 . So g=ind(C,J)=1

1, 1
2 2
V,=V,=C*=|0 -1 0
1,1
2 2
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Let a=1. We have

1 1
2010_0_100_11(0_1)0_1025_5015__6
001) (-1 1 1)lo 0 -1 1,01 0 o-1 o

2 2

1 0 O
with Smith form S7 /=0 1 0 | asexpected.
0 0 ¢°

2-0 1l-0 1-o0

So the matrix we are looking for is A(o) = aA(i) = 1a—l o 1a—E
o 2 2 2 2
0 l-o 1
with

1 c 0 0
S:(U)=0'S§(G)(E)= 0 o 0
1
0 0 =
O_2

and
0 00O C

ACI+AC=|0 0 O|;rank| CJ |=3

0 0O CJ?

Example 29: We want to find the polynomial matrix A(c) with given backward behavior

B.(K) =+[OJ5(N —k)+[_lj5(N —k—1)+ﬁ5(|\| —k—2)+(lj5(N —k-3)
1 0 1 0

X3 X2 X1 X0
which means we have (+0, =4. We can start by assuming that g=1. Then we define the

matrices
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11 -10
C:(Xl,o X1 X X1,3): 01 0 1 , J =

o O o o
O O O -
o O O
o O O

The matrix S, =C has not full column rank, so the assumption g=1 is dismissed. Now assume

that g=2.
11 -10
C 01 0 1
S,y =9 = =
cJ 01 1 -1
00 1 O

this matrix has full column rank because det(S,) #0. Therefore, we have that q=ind(C,J)=2.
Let also a=1 and define
A(e)=L,-C(I-1,) " {(c-1)V, +(c-a)’V,}

-1

C
where V =(V, V.)=
1 1 0 0Y'
hC(\]I),111—100—110 1 -2 -1
e have - = =
we hav Y Zlo1 0 1)lo 0o -1 1 0 -1 -1 -2
0 0 0 -1
1 2] 0 1
1 1 -1 0) |1 3.1,
1 0 1 2 2| 2
V= V)= —
(Vi Ve) -1 -2 -1 1 —% —% —% 0
0 -1 -1 -2 ol
2 2] 2
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0 1
-1 1 0 0Y° 1y
i 1 0)(11-10)0 -1 1 0 2
Ao) = - -1 +(o-1)?
(©) (Olj(OlO 1}0 o 1 1] )—% o [F@7Y
0O 0 0 -1 1
|
2
o} 20°—o0-1
11,1, 3,2 1
2 2 2 2
with Smith form
1 0
o _
SA(U)_(O 04)
The dual matrix that we are looking for is
1 o o’ —0+2
Alo)=c’A(X)=|1 1 1, 3
o) —0o—-— ——0 +—
2 2 2 2
with det[ A(o)]=1 and Smith form at infinity
1 o> 0
s _ 20
SA(o-) (O-) =0 SA(U) (;) 0 =
(o2
and
C
ACJ*+ACI+AC = 0000 ; rank < =4
000 0) ci?|
cJ?
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CHAPTER 4
CONSTRUCTION OF ASYSTEM OF ALGEBRAIC DIFFERENCE EQUATIONS
WITH GIVEN FORWARD AND BACKWARD SOLUTION SPACE

In Chapter 3, we studied the construction ofa system in the form of an AR-representation
that satisfied a given forward behavior. A theorem was also provided for the case of backward
behavior. We shall now combine these two results, in order to create a method for constructing a

system that satisfies both a forward and a backward behavior of our choice.

Theorem 30: Let A(o)=Ac"+A 0" +..+ A, e R™[o] with rank, ,A(c)=r and o; #0
such that det(A(c;))=0 (o, s a zro of A(g)). If ﬂj(k):Cijkx0 (where
(Cj eR™,J, eR”"X”J’) is a finite Jordan pair corresponding to the zero o, of A(c)) is a

~ k
solution of the AR-representation A(c)B(k)=0, then f; (k) =Cij’1(Jj’1) X, is a solution of the
dual representation A(c)A(k)=0.

Proof: Since SB(k) =C,J X, is a solution of A(c)B(k)=0, we have that
B(0) C
pO | | ¢,
: - : %o

pa-y) (CJ5"
Taking Z transform in A(c)p(k)=0 we have that

A, 0 -0 C,
A(Z)Cj(zlnj)(zlnj—Jj)ilz(qur 2, 2l A“ A* 0 C"EJ" X,
AR Al
replacing z with % and multiplying both sides by z°
A 0 0) c,
A(Z)Cj(%lnj)[%lnj—Jjj_lxoz(lr 20, e 27,) A‘“ A‘ o C"EJ" X, =
AL A A G
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A A e A o
~ - 0l CJ.

—>A(Z)Cj(lnj—ZJj)lxoz(zq—llr AR RS I,)'A;2 A3 L x>
A, 0 - 0JlCart

The matrix J i is invertible so therefore

A A A C
—>/§(Z)CJ.((JJ.‘1—zlnj)Jj)1x0:(zq—1|r 20, |r)A22 A, _ 0 Cj"]j X, =
A O 0 )l c,a¢
A A - A)CJ,
—>—A(z)CjJJT1(zlnj—JJTl)_le:(z“'*Hr AR PP |r)'65‘2 A3 j:‘]jz Jj—lXO:
A O 0 ){c,a¢
Since the pair (C;,J;) is a finite Jordan pair of A(c) we have that
Aij+A&Cij+~--+AquJ?=O,So
A O 0 -C,
%—A(z)ch;l(zlnj)(zlnj—J;l)*lxoz(zqh 2, o) A& % ? I

= A@CI (a1, )2, ~371) %=(2, 2, - al,)

J

Therefore we have concluded that
ﬁw)zzlpﬂn}:z1&;%1@h)(nm-Jf)i%}:cgf(hﬁk%

is a solution of the dual AR-representation A(c)A(k) =0 for initial conditions
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BO) ) (CJI}
ﬂ:(l) _ Ci:]j X,
p-1) (CJI}°

.
Since the matrix J j‘l is not in Jordan form, we can find a nonsingular constant matrix
U eR"™ suchthat J;*=UJ,U™" where J; is in Jordan form. With this change, the solution of
A(o)B(k) =0 canalso be written as follows:
AK)=C37H(3;) % =CUT U (3, ux, =C(J,) (Ux,)

where C, =C,UJ; and we used the fact that

(LIu*) =ujutuJutujutuiut=u(§)u
— ] J ]
I I

So we can see that instead of using the matrix pair (Cj.]j‘1 eR™ J; e R ) where the matrix
J;* is not in Jordan form, we can use the matrix pair

(€,=CUJ, eR™ J;=U"J}U eR"™)
where J; is inJordan form.

Summarizing these results, in order to construct an AR-representation for a certain forward and

backward behavior, one must follow the next algorithm.

Algorithm 31: Construction of an AR-representation with given forward & backward behavior.

(except from polynomial behavior).

Stepl: Transform the finite Jordan pairs (Cj eRM",Jj ERH"X”") that correspond to
solutions of the form  B(k)=C,Jix, to the finite Jordan pairs

(éj =CUJ; eR™,J,=U"J;U Eanxnj) that correspond to the solutions of the form

Bk)=C, (Jj )k (U ‘1XO) of the dual system that we are looking for.
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Step2:  Create the infinite Jordan pairs that correspond to solutions of the form (6). These

are also the finite Jordan pairs for the f.e.d. at zero of the dual system.

Step3:  Construct the polynomial matrix A(a), using the method presented in Chapter 2
Step4:  Get the polynomial matrix A(c) = a“A(i) that we are looking for and thus the
O

AR-representation is A(c)p(k)=0. O

Algorithm 31 can be implemented in Mathematica.
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Algorithm 31

cl=Input["input matrix C, corresponding to the Finite Jordan Pair"]
jl=Input["input matrix J, corresponding to the Finite Jordan Pair"]
{u, jnew}=JordanDecomposition[Inverse[]jl]];
cnew=cl.u.jnew;
cinf=Input["Input matrix C.inf, corresponding to the Infinite Jordan
Pair"];
Jinf=Input ["Input matrix J.inf, corresponding to the Infinite Jordan
Pair"];
Cpair=ArrayFlatten[{{cnew,cinf}}];
{rowsjl,columnsjl}=Dimensions[jl];
{rowsjinf, columnsjinf}=Dimensions[jinf];
Jpair=ArrayFlatten[{{jnew,ConstantArray[0, {rowsjl, columnsjinf}]}, {Cons
tantArray [0, {rowsjinf, columnsjl}],jinf}}1;
g=1;
{rowsC, columnsC}=Dimensions [Cpair];
S=Cpair;
While [MatrixRank[S]<columnsC,
q=q+1;
S=ArrayFlatten[{{S}, {Cpair.MatrixPower[Jpair,g-1]}}1]
a=Input ["Choose a value a, other than the f.e.d.'s of the desired
system"];
M=Cpair;
For[i=1,i<qg, i=i+1,
M=ArrayFlatten[{{M}, {Cpair.MatrixPower[Jpair-a
IdentityMatrix [Dimensions [Jpair]],—-1]1}}]]
M=PseudolInverse [M] ;
{rowsM, columnsM}=Dimensions [M];
step=columnsM/q;
indicator=1
For[i=1l, i<=q, i=i+1,
v[i]=Take[M, {1l,rowsM}, {indicator,indicator+step-
1}];indicator=indicator+step]
sum=(s-a) ¥ v[1]
For[i=l,i<q,i++,sum=sum+(s—a)q"i v[i+1l]]
sum=sum//Simplify;
A=TdentityMatrix[rowsC] -Cpair.MatrixPower[Jpair-a
IdentityMatrix [Dimensions [Jpair]],-q].sum//Simplify;
A=A/.s—>1/s;
A=A s

Example 32: We want to find an AR-representation A(c)p(k)=0 with the following forward and

backward behavior
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k)= 1 2% L k2* = 1 2% 2 k2** and
a5 {2 ()

Pia Bo P Pro

B, (k) :(:3§(N—k)+(_11j§(N —k+1)+@5(r\| —k+2)

We first define the matrix pair

2 1 2 1
Clz(ﬂl,o 131,1): 0 -1 and J, = 0 2
11 1
ja_|2 4| 1 02 10
! 1 0 -4 1l0 -4
2 U 2 ut
5
Ly
. - (2 1)1 0) 2 10
1:C1U‘]1: =
0 -10 4, 1| (0 2
2
0 1 1 010
C, = (%, xm)z(3 _ ,J,=[0 0 1
000

The whole matrix pair is

0203 1 41
1 91000
2
1
0 200 0
Jz(JloJ 5
0 J,) [67067 61
0 0001
0 000

Now we start assuming different values for g. First assume that g=1,

in this case we have that the matrix
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~ 100 -1 -1
C:(Cl Cz):[o s 3 1 _J does not have full column rank, so q =1

Now assume that q=2

1 0 -1 -1

s—C—0231_1

>“lea) 1 10 0 1
2
010 3 1

Because this matrix does not have full columnrank, q=2.

Now assume that q=3.

1 0 0 -1 -1
0 2 3 1 -1

1
C 5100_1
S;=|CJ =0 1 0 3 1

cl?) |1
100 O

4
o Lo o0 3

2

The matrix S, has full column rank, so g=3.
Leta=1. We have

A(e)=1,-C(I-1,) {(s—1V; + (s —1)°V, + (s -1V, |

-1

C
where (v v, v)=|c(a-1)*| =
C(I—1y)~"
5¥31 3910 Tele 4151 2330 2471
11 623 11623 | 11623  11623| 11623 11623
1227 2017 3555 1414 2391 811
11623 23246 23246 11 623 23246 23246
10 798 6568 2545 14 563 1427 6482
34 869 11623 34869 34869 | 34869 34 869
4154 7778 3757 12104 830 4326
11623 11623 | 11623 11623 | 11623 11623
2926 2644 1047 5845 208 3201
L 11623 11623 11623 11623 | 11623 11 623
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So we have

A@)=1,-C(I=1,) {(s—DV, +(s—D)*V, + (s -1V, } =

15816 — 693505 + 8571557 — 20558s°  25(2636—9801s + 716557 )

11623 11623
3(456 _77s-2961s% + 258233) s (456 +2275+10940s2 )
11623 11623

Therefore, the polynomial matrix we are looking for is (we multiply by 11623 to get a simpler
result)

A(o) = 1162303,&(1) =
(o2

158165° —69350s” +85715— 20558  2(26365° —9801s + 7165)
3(4565° —77s* —2961s+2582)  (4565” +2275+10940)
and by multiplying by 11623 we get
And as a matter of fact, this matrix A(c) has the pairs (C1 .]1) and (C2 JZ) as Jordan pairs,

which is easily checked in Mathematica.

The whole string of commands In Mathematica is
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c={{1,0,0,-1,-1},{0,2,3,1,-1}}
j={{1/2,1,0,0,0},{0,1/2,0,0,0},{0,0,0,1,0},{0,0,0,0,1},{0,0,0,0,0}}
b=1

ArrayFlatten[{{c}, {c.]}}]

MatrixRank [ArrayFlatten[{{c},{c.J}}]1]

(rank equals 3 so we move setting g=3)

MatrixRank [ArrayFlatten[{{c},{c.]}, {c.MatrixPower[j,2]1}}1]
(result equals 4, so g=3)

m=ArrayFlatten[{{c}, {c.MatrixPower[j-b IdentityMatrix[5],-
1]}, {c.MatrixPower [j-b IdentityMatrix([4],-21}}]
ml=PseudoInverse[m]

vli=Take[ml,{1,4},{1,2}]

v2=Take[ml,{1,4},{3,4}]

v3=Take[ml,{1,4},{5,6}]

a=IdentityMatrix[2]-c.MatrixPower |[]j-b IdentityMatrix[5],-3]. ((s-
b)v3+(s-b) "2 v2+(s-b)"3 vl)//Simplify

ad=a/.{s->1/s}

adual=s"3 abar//Simplify

aO=adual/.s->0

al=(adual-al)* (1/s)//Expand

al=%/.s->0

a2={{-69350/11623,2 2636/11623},{3 (-77)/11623,456/11623}}
a3={{15816/11623,0}, {3 (456/11623),0}}

cl={{1,0},{0,2}}

j1={{1/2,1},{0,1/2}}
a3.cl.MatrixPower[jl,3]+a2.cl.MatrixPower[Jl,2]+al.cl.MatrixPower [j1,1]
+a0.cl

Output: {{0,0},{0,0}}

(First Jordan Chain Checked)

c2={{0,-1,-1},{3,1,-1}}

j2={{0,1,0},{0,0,1},{0,0,0}}
a0.c2.MatrixPower[j2,3]+al.c2.MatrixPower[j2,2]+ta2.c2.MatrixPower[j2,1]
+a3.c2

{{0,0,0},{0,0,0}}

(Second Jordan Chain Checked)
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We have constructed an algorithm of finding the polynomial matrix A(c) corresponding

to certain behavior. As we have already mentioned, A(c) is not the only polynomial matrix

satisfying the given behavior. Any other unimodular equivalent matrix A(s) such that

A(s) =U(o)A(c) with detU =ceR gives a solution to our problem. More specifically, all the

divisor equivalent polynomial matrices are solutions to our problem.

Definition 33 [Karampetakis et al 2004]: A(o),A (o) e R[c]™" are said to be divisor

equivalent if there exist polynomial matrices M (s), N(s) such that:

A(s) )
(M(S) AZ(S))(—N(S)]_
. A(s) .
and the compound matrices (M (s) A,(s)) and N(s) satisfy:

(1) have full rank over R[s] and no f.e.ds.

(i) have no i.e.ds.
]
Divisor Equivalence is very important for us, since it has the property of preserving both the

finite and the infinite elementary divisors of a polynomial matrix.

In Theorem 28 and Algorithm 29 we used the transformation z—>1. As a result, the
z

algorithm works well only in the case where there are no polynomial functions in the behavior
space and the matrix J is invertible. For example, if the matrix J corresponds to a f.e.d. at zero, its

diagonal elements would be zero, thus J won’t be invertible. We can overcome this problem by

. . 1 . .
using the transformation z—>;+b and thus moving all possible zeros of A(c) to non-zero

places. We do this by following these remarks

e If (C.,J,) isa finite Jordan pair of A(s), then (C,,J, +bl,) is a finite Jordan pair of
A(c-B).
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e If (C,,J,) is an infinite Jordan pair of A(c), then (CZ,JZ(In+bJ2)7l) is an infinite
Jordan pair of A(c-b).

Example 34: We want to find an AR-representation A(c)B(k)=0 with the following forward and

backward behavior

B.(K) = [_11)5(k)+((1)j S(k-1) and ,(k) = (:3 5(N—k)+{_11j§(N —k+1)

A Bro X1 X0
We define the matrix pair C,=(8,, A,)= (1 ! j and J°, = [0 1)
0 -1 00
but we are not going to use this Jordan pair. Instead we will create the new pair
C, = (B ﬂ1,1)=[1 : J and J, =J, +2l, :(2 1)
0 -1 0 2

that will give us the dual polynomial matrix of A(c-1). Let also
1 1 1

- = -1
34 2 4| 1 0})l2 1 0
! 1 0 -4 1/l0 -4
2 U 2 ut
J
1
3 - (1 1)1 0)l2 1 1,
©=C9%=y L)lo - 1|72
B 1o > 0 2

The infinite Jordan pair is
-1 -1 01
CZ = ’ ']2 =
1 -1 00
but instead we are using the pair (C2 J, (1, +J2)_1)

L (01
JZ(I2+2J2)1:(0 oj

Let
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1
N |
@ <) 2

0 211 -1
1 91000

2
[0 1o Lo o
0 3, 2|
0 00 1
0 00 0

Now we start assuming values for g. For g=1 the matrix C obviously does not have full column

rank.
For g=2
1 -1 -1 -1
2
C 0o 2 1 1
2% ¢ )7 1
- 0 0 1
4
0 1 0 1

with det(S, )= % =0, and so g=2 is accepted.

Let a=2. We have

B(o)=1,-C(J-21,)" {(c -2V, +(c-2)*V,}

-20 6]-33 -5

- 9 3

C 13 0|2 -2

where (V, V,) :(C(J —2I)‘1] - 2 5
-10 -1({-15 1

4 2| -6 -2

Therefore
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i(2—110+1402) i(2—7a+3az)
Bo)=1,-C(3-21,)" {(c -2V, + (o -2V} =| *° 36
i(—2+56—2az) i(—2+a+3az)
12 12
The dual polynomial matrix A(c-2) is
1 1
—(20%-110+14) —(20°-T70+3
A(o-2)=0B(L) = 3 ) %! )
7 i(—2+5a—202) i(—202+a+3)
12 12
So

%(20‘2 -30) 3—:2(202 +0-3)
Alo) =

—i(ZO'Z +30) —i(Za2 +70+3)
12 12

with Smith form

1 0
SE(U) (O-) = (0 0_2]

and Smith form at infinity

. 1 1 0 o> 0
SA(cr)("):GzSg(a)(E):GZ{O azjz(o J

Both Smith forms are exactly what we expected and confirm the correctness of our algorithm.

Again we check the initial Jordan pairs:

« . 0 0
AC,+ACJ +ACJ :(O Oj ; rank| CJ7, |=2

00
A2C2+ACZJ2+AbC2J22=(O o} - rank| C,J, |=2
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CHAPTER 5

Construction Of A System Of Algebraic Difference Equations With Given
Forward & Backward Behavior Via The Decomposable Pairs Method.

In this chapter we will present an alternative method of constructing a system of
difference equations first presented by Gohberg. This method uses the theory of decomposable

pairs of a matrix A(o).

Definition 35 [Gohberg et al 1982]: A matrix pair (X,T) is called decomposable of order p if

X eR™ and T e R™P. Anadmissible pair (X,T) of order rq is called a decomposable pair of

degree q if the following conditions are satisfied:

i) X =(X, Xz);T:[Tl Oj

0 T,

where X, eR"" T, e R™ forsome 0<n<rq, so that X, e R™"*™"; T g R

i) The matrix

Xl X 2T2(kl
XlTl X 2T2q_2

g-1
XlTl XZ
is nonsingular.

A decomposable pair (X,T) will be called a decomposable pair of the regular

polynomial matrix A(c) defined in (1) if in addition to (i) and (ii) the following condition holds
i) D AXT =0; 3" AX, T =0.
U

A decomposable pair appears to include the full spectral information of a polynomial matrix.

That is both the finite and infinite structure.
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The existence of a decomposable pair for every nonregular polynomial matrix follows

from the following theorem.

Theorem 36 [Gohberg et al 1982]: Let A(c) defined in (1) and (C J) and (C, J,) be its

finite and infinite Jordan Pairs. Then

is a decomposable pair of A(c).

0

A very important result is that we can always construct a regular polynomial matrix A(c)

corresponding to a given decomposable pair (X,T). The way is given in the following theorem

Theorem 37 [Gohberg et al 1982]: Let (X,T) be the decomposable pair of degree q given in

definition 35 and let S, ; be the matrix defined in the same def. Then for every r x rq matrix V

S
such that the matrix ( {“/ZJ has full column rank, the polynomial matrix

0

| —
A(e) =V (I —P)(O- OTl e

U, +U,c+...+U_ 0%
q

has (X,T) as its decomposable pair, where

with
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and

q-1

Uy U, - U)=8.

O
Therefore, given a decomposable pair (X,T) of degree g, we can always create a

polynomial matrix A(c) of degree g. Using the above theorem we construct the following

algorithm.

Algorithm 38: Construction of a system of algebraic difference equations with given forward &

backward behavior.

Suppose that we are given the vector space
BD — (£ (k)= Akx KA 1xi k 2y
F — gj,q( )_ﬂi Xj,q+ i Xj,q—1+"'+ q i Xj,O

iek; j=zztl,...,r; 4=01,..,0;, , and the vector space

BY =(&0(K) =X, 6(N =K) + X, ;(N = (K +1)) +...+ X o 5(N = (K +1)))
#0,1,...,q9+q;,-1; jeR,
Step 1: Construct the finite Jordan pairs (Cj eR™,J, eR”"X”J’) corresponding to the forward

behavior of the systemand let

c=[C, C, - CJeR™
J:=blockdiag[J, J, -+ J,]eR™
Step 2: Construct the infinite Jordan pairs (CkD(k) e R™™%)  3P(Kk) e R“”qi)x(q*qj))

corresponding to the backward behavior and let

Co? (k) = [Cf(k) thll(k) C,D(k)] cR™

32 (k) :=blockdiag[ 30 (k) J2,(k) -+ JIP(k)]eR"*
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Step 3: Find the least g such that

c cJct

cl] CJ.°%°
Sq_l = . .
cJet C

[e¢]

has full column rank.
: S¢2
Step 4: Find V such that \q/ has full column rank

Step 5: Find

Step 6: Define the polynomial matrix A(c) as

0

| —
A(e) =V (I —P)(O- OTl o

j(UO +Ulo-+...+Uqflo-q’l)

The vector space BE and BE'f belong to the solution space of the system A(c)B(k)=0. It must be

noted though that in general, they do not span the whole behavior space of A(c)B(k)=0. O

Example 39: We want to find an AR-representation A(c)p(k)=0 with the following forward and

backward behavior
1 1 1 2 ~
B (k) = (_J 2 +£oj k2" = [_Jzk +(oj k2" and

B Bio P Bio

(B7(K))=B,(K) :(:35(N—k)+(_11j5(N —k+1)+((2)j5(N —k+2)

X2 X1 X0

Step 1: Create the Finite Jordan Pair
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2 1 2 1
Clz(ﬁl,o 181,1): 0 -1 and J, = 0 2

Step 2: Now create the Infinite Jordan Pair

2 -1 -1
CZZ(Xl,O X1 X1,2):(0 1 _:J"]z:

o O O
o O
o - O

Step 3: Now let us find the desired g! We begin by setting g=1

_ 2 112 -1 -1
The matrix S,=(C, C,)= o do 1 4

does not have full column rank

2 1 ‘ 0 2 -1
: C, CJ 0 -1]0 0 1
Forg=2the matrix S, =| * 272
cJ, C, ) |4 4‘ 2 1 -1
0 210 1 -1
does not have full column rank.
2 10 0 2
) 0 -1/{0 0 ©
Cl CZJZ
: 4 410 2 -1
For g=3 the matrix S,=| CJ, C,J, |=
) 0 2/0 0 1
Cl‘]l C2
8 1212 -1 -1
0 40 1 -1

has Rank=5. Thus g=3 is our choice.

S
Step 4: We must find matrix V such that [Vlj has full column rank!

1 01 0 1
For V=

01010
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2 1 0 2 -1
0O -1 0 0 1
have that S, B 4 4 2 -1 -1
we have tha vitlo 2 0 1 41
1 0 1 0 1
0O 1 0 1 O

has full column rank!

1 ¥ 6 6 45

17 17 17 17
1 4 4 13

Lo 7w m o nm
Step 5: p:(é )Sz—l( AJSF . 24 23 6 9%
17 17 17 17

20 5 12 46

17 17 17 17

0 O 0 0 0

ol,-J, )
Step 6: A(0)=V(|5—P)( 0 an—Isj(U°+U16+U20 )=
10 2 )

= (s-2 ~ (48-495+10
7672 17( 5:+105°)

i(716—6285 +13532) i(3192—28465 +1121s% — 27033)
578 578

Taking the determinant of A(c) we can check that

Det(A(s))= 2%(5 ~2)* (155 -2)

So the system A(c) does actually have a finite elementary divisors at s=2 of order 2 as we

wanted! (it also has more zeros, so our given behavior does not span the whole solution space)

Now we want to check if it also has an infinite elementary divisor at infinity of order 3! To check

this we will take a look at the dual matrix of A(o).
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Ao) =
—E(s2 —25?) 3(4833 —495% +10s)
17 17

i(716ss — 62852 +1355) i(319253 —2846s? +1121s — 270)
578 578

with Dets — 0 &* (~154 25) (25— 1)’
289

So the dual matrix has a Smith form at zero of order 3

1 O
Sg(a)(a):(o 0'3j

and the matrix A(c) has a Smith format infinity

" 1 a0 o’ 0

This agrees with our theoretical results because we know from theorem 23 that the vector S;° (k)
is the sum of g+q; vectors. Inthis example, we have that g=3 and q+q; =3. This means that

q; =0. This result agrees with the Smith form of A(c) at infinity and the Smith form of the dual

matrix at zero.

Finally, we check the properties regarding the Jordan Pairs (C, J,) and (C, J,)

C
AC,+ACJ +ACJI>+ACJI° = crank| T |=2
0 CJ,
0 ©
AC,+AC,J,+AC,J,> +AC,J,° _[o J; rank| C,J, |=3
C2‘]22
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Example 40: We want to find an AR-representation A(c)B(k)=0 with the following forward and

backward behavior

=14l Lk and s00=] ek el Nkt
00=(2)o( ) 1 0~ Hjsos-0-( Fou-srs

P Bro X1 X0

Step 1: We define the finite Jordan pair pair
C,=(5 ,B)—llandJ—ll
1 10 l,l__l O 1_0 1
Step 2: The infinite Jordan pair is
-1 -1 01
CZ = ,‘]2 =
1 -1 00

Step 3: Now let us find the desired g! We begin by setting q=1

The matrix S, =(C, C,) is neither invertible, nor has full column rank.

1 1 ‘ 0 -1

. C, C,J -1 00 1

For g=2 the matrix S, :[C 3 é 2] T tT
1v1 2 T

-1 —1‘ 1 -1

has full column rank.

S
Step 4: We must find matrix V such that (VO] has full column rank!

100 1
For V=
(0110}
1 1 -1 -1
) |[-10 1 -1
V) |1 0 0 1
01 1 0

This matrix has full column rank.
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11—10
2

0 | 01 0 -2

Step5: P=| 2 S 2 S, =

J, ) o) 1

? 2 0> 0 -1
2
00 0O O

l,-J 0
Step 6: A(a)=v(|4—P)(G 20 ! o3| j(u0+ulg)=
2 2

%(—4+3s—sz) %(—2+s—sz)

L 6+55—s° L 4+3s-5°

E(_ +55-5°) E(_ +3s-5°)
Taking the Determinant of A(c) we can easily check that
Det(A(s)) = (s—-1)°

So the system A(c) does actually have a finite elementary divisor at =1 of order 2!

For the infinite elementary divisor we need to take a look at the dual matrix
Alo) =
1, . 1 2
E(_4S +3s—1) E(_ZS +s—1)
l(—632+5s—1) 1(—452+3s—1)
2 2
with a determinant of

Det = (s—1)°s?

So the dual matrix has a Smith form at zero

1 0
Sg(a)(a):(o O_ZJ
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and matrix A(c) has a Smith form at infinity

" 1 o’ 0
SA(G) (O-) = 0282(0-) (;) = ( 0 1}

Finally, we check the properties regarding the Jordan Pairs (C, J,) and (C, J,)

2

AC,+ACJ +ACJI* = 00 ; rank .
1 1¥1 Y1 T O 0 ! ClJl

AC,+AC,J +A10J2—O 0 ; rank C2 =2
2 2Y2 22_0 O’ C2J2_

Example 41: We want to find an AR-representation A(c)p(k)=0 with the following forward and

backward behavior

1 1 1 2
BK)=|-1|2+] 0 [k2“=|-1]2“+| O |k2*
0 1 0 -1
B _E A Ao
Bo
1 1 0
B,(K)=| -1|S(N=K)+| O [S(N-k+D)+| 2 |5(N-k+2)
0 -1 -1

X2 X1 XL0

Step 1: Create the finite Jordan Pair

2 1

2 1

Clz<181,0 181,1): 0 -1};J= 0 2
-1 0

Step 2: Create the infinite Jordan pair
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0 1 -1 010
C,=(X, X,)=[2 0 -1[;J,=/0 0 1
-1 -1 0 000

Step 3: We will now start assuming values for g. For g=1 the matrix

2 110 1 -1
S,=(C, C,)=/ 0 -1| 2 0 -1/ doesnot have full column rank.
-1 0/-1 -1 O

2 1|10 0
0 -1]0 O
. cC CJ -1 0]0 0 -2
For g=2 the matrix 31=(C3 é wj: 4 410 1 1
1¥1 o -
0 -2/2 0 -1
-2 -11-1 -1 0

has rank=>5, thus it has full column rank, so g=2 is the accepted value.

S
Step 4: We must find a matrix V, such that the matrix [Voj has full column rank.

For
1 0011
V=0 1 1 10
1 01 01

we have that
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2 1 0 1 -1
0O -1 2 0 -1

S,) |-1 0 -1 -1 0
(vj: 1 0 0 1 1
01 1 1 0
1 0 1 0 1

has full column rank.

17 40 63 -33 -T2
23 23 23 23 23
44 67 -90 57 93
Lo | 23 23 23 23 23

Step 5: P:(S ] js;l(osjsoz 24 24 24 29 34
- 3 23 23 23 23 23

24 24 24 29 34

23 23 23 23 23
o 0 0 0 0

l,-J 0
Step 6: A(a)zv(ls—P)(G 20 ! o1 ](U0+U10)=
0 3

E(3—55 + 252) ~1643 s +Es2 i(—946+3053 +11252)
529 529 529 529
i(—9+ 48s — 2832) —3(—105+ 40s + 732) i(—132 —355— 2832)
23 23 23
i(237 +732s +11st) i(2037 +5065 + 5652) i(1137+ 394s + 5632)
529 529 529

with a determinant of
Det[A(s)] = 33 (s—2)%(9+14s)
529

Now we will check if the dual matrix has a finite elementary divisor at zero of order 3.

A(o) =
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5—6(332—55+2) “1643 ., 56 i(—946sz +305s+112)
529 529 529 529
i(—gsz +48s — 28) —3(—1055,2 +40s + 7) i(—lszsz — 355 — 28)
23 23 23
i(237sz +732s +112) i(2037sz + 5065 + 56) i(1137s2 +394s + 56)
529 529 529

with a determinant of
Det| A(s) |= £s3(25 ~1)%(9s +14)
529

so the Smith form at zero of the dual matrix is

10 0
0 _
Sim(@)={0 1 0
00 o°
which means that the Smith for at infinity of A(c) is
1 > 0 0
0 _ 2¢O _ 2
Sam(0)=0 SA(a)(E)_ 0 o (;
0 0 —
(o2

so the system A(o) actually has a zero at infinity of order 1, which agrees with our theoretical

results because we know from theorem 23 that the vector S;°(k) is the sum of q+q; vectors. In

this example, we have that qg=2 and q+q; =3. This means that qg; =1. This result agrees with the

Smith form of A(o) at infinity and the Smith form of the dual matrix at zero.

We can also check in Mathematica that the matrix pairs (C, J;) and (C, J,) are indeed the

finite and infinite Jordan pairs of the matrix we found, because they satisfy

0 0
C
ACJ*+ACJ +AC =|0 0, rank [C ' ]: 2
0 0
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000 C,
AC.J.2+ACJ_+AC,=|0 0 0| rank|CJ, |=3
000 c.J?

Second approach:

In the first method, we started by knowing from the form of f£,(k) that q+0, =3. We first
assumed that q=1, hence ¢, =2, but the matrix S, did not have full column rank, so we

continiued assuming that g=2 (so g, =1). For this case the algorithm worked fine and we got the
desired result. The Smith form of the dual system at zero was

o 0 0 1 0 O
Sg(a) ()= 0 &% 0 |=/0 1 O
0 0 o' 00 &

Although this method for g=2 worked fine and is absolutely theoretically correct, the truth is that
we can examine other possible cases.

What we could assume, is that there is also another i.e.d. at infinity, which means another f.e.d.
of the dual system at zero, of order q'<qg, =2. The possible values for q' are q'=1 q'=2 or
q'=-1 (incase we have a pole at infinity). This means that the Smith form of the dual system at
zero could be

oAl 0 0 1 0 O
82(6)(0')= 0 o™ 0 |[=|0 o> O
0 0 o' 0 0 o
or
o’ 0 0 1 0 O
SZ(U)(0)= 0 o™ 0 |[=|0 & 0
0 0 o' 0 0 ¢
or
o’ 0 0 1 0 O
Sie (@)= o 0 |=|0 o O
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We will study the first case, where there is an extra i.e.d. oforder 1.

To this i.e.d we correspond an infinite Jordan Pair (q+q’=2)

a o

c.-| p ; 01
3 3 0 O
y ¢
The combined Infinite Spectral Pair will be

01000
0 1 -1 ad 0 00O0O
C,=(C, C)=|2 0 -1 Be|;J,=|0 0010
-1 -1 0 y<¢ 0 0001
0 00O00O

We will now continue with the algorithm

Step 3: For g=2, we must find o,B,y,9,¢,C such that the matrix

c, C.J.
S=cy c
1v1

0

has full column rank. But this matrix is 6-by-7, so it cannot have full column rank. This means
that we cannot solve this problem for g=2, so the case for g=3 has to be examined. But since we
have already proved that this problem has a solution for g=2, by solving the problem for the case
of =3, we lose one of the most important aims we had, which is finding a system of the smallest
possible degree q, satisfying a given behavior. The same thing goes for q'=2.

So the two cases of adding a zero at infinity of our choise are discarded, because they will lead to
a system of higher degree.

Let’s now consider the case where there is an extra pole at infinity. in this case, To this i.e.d. we
correspond an infinite Jordan Pair

a
C,=|p8]|; ;=0
4

The combined Infinite Spectral Pair will be
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0 1 -1« 8328

C.=(C, C)=|2 0 —1p|ia= |
1 -1 0|y

0lo 00

We will now continue with the algorithm

Step 3: The case of g=1 needs not to be examined, we can be sure that S, will not have full
column rank. For g=2, we must find o,B,y such that the matrix

2 110 0 1 -1
0 -1/0 0 0 -1
S:(cl cmwj: -1 0|0 0 -1 0
tled, C, 4 410 1 -1 «
0 2|2 0 -1 p
2 -1[-1 -1 0 vy

has full column rank. For a=p=1 and y=0 this criterion is satisfied. So q=2.

S
Step 4: We must find a matrix V, such that the matrix (V"] has full column rank.

For
1 00110
V=01 1 1 0 1
1 01 010
the matrix

2 1 0 1 11
0 -1 2 0 -11
(soj_ 1 0 -1 -1 00

=
o o
=)
o b
=
o o

has full column rank.
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5 -8 21 6 -6
13 13 13 13 13
4 17 -30 -3 3
13 13 13 13 13
Step 5: P:[I2 Ojs;l('ajsﬁ 0o 0 0 00
0 J, 0, 8 8 -8 7 6
13 13 13 13 13
-4 -4 4 3 10
13 13 13 13 13
0 O 0O 0 O
. ol,—J, 2.4
Step 6: A(U)=V(|5—P)£ 0, o _IJ(UOJFUla)_
3(5—40+02) i(—5+30‘+02)
13 13

A(o) =

I—;(l—8a+3az)

i(—17—5a+6az)

%(27 —130—30'2)

13

with a determinant of Det[A(c)]

12
—(-2+s)’
13( )

The dual system is

A(o) = 1—2(102 ~80+3)
%(—1752 ~50+6)

with a determinant of Det[A(a)}

10

0 _
SA(J) (0)=|0 o
0 0

We can also check that
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12 o*(-1+20)* and
13

o O

3

Q

%(15—6+30‘2)

%(502 —40'+1) é(—&# +30'+1)
1(2702 ~130 —3)
13

%(1502 -0 +3)

0

%(18—110+20'2)

%(—14 +250 — 60‘2)

%(—1—7a+302)

%(1802 —110+2)

%(—1402 +250—6)

%(—102 —To+ 3)
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00
C
ACJ’+ACJ, +AC =|0 0 rank| * |=2
Cl‘]l
00
0000 C,
AC,J.>+AC,J +AC, =/0 0 0 Of; rank|C,J, |=4
0000 c,J’
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CONCLUSIONS

Overall, we have studied the behavior of discrete-time AR-representations, the solution
space of sucha system and the construction of a square matrix A(c) such that the corresponding
AR-representation satisfies a given behavior. More specifically, we managed to give a theorem
connecting the backward behavior of a system to the forward beahvior of it’s dual representation
corresponding to the f.e.d. at zero. In addition, we provided two methods of constructing a
system with a given forward and backward behavior. The first algorithm was implemented to

mathe matica.

In the algorithms presented by Gohberg, it is assumed that the whole spectral information
will be given. We have seen that even when this is not the case, our algorithms still function, but

with complications (e.g. extra behavior).

These methods where studied for square systems of difference equations, yet it is possible

that these results can be implemented to the case of non-square systems.
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