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ΠΕΡΙΛΗΨΗ 

Στην παρούσα διπλωματική εργασία γίνεται μελέτη των συστημάτων αλγεβρικών 

εξισώσεων διαφορών που βρίσκονται στη μορφή AR-representation, δηλαδή στη μορφή  

( ) ( ) 0A k   , όπου ( ) [ ]r rA     και ( ) ( 1)k k   . Η εργασία είναι χωρισμένη σε δύο 

μέρη. 

Στο πρώτο μέρος μελετάμε τις λύσεις των συστημάτων αλγεβρικών εξισώσεων 

διαφορών, οι οποίες χωρίζονται σε δύο μεγάλες κατηγορίες, που συνδέονται με τους 

πεπερασμένους και τους άπειρους στοιχειώδεις διαιρέτες του συστήματος αντίστοιχα. 

Στο δεύτερο μέρος μελετάμε το αντίστροφο πρόβλημα. Έχοντας δεδομένη τη 

συμπεριφορά ενός συστήματος, να κατασκευάσουμε τον πίνακα Α(σ) ώστε να ικανοποιεί τη 

δοσμένη συμπεριφορά. Δίνουμε ένα θεώρημα που συνδέει τη backward συμπεριφορά ενός 

συστήματος με την forward συμπεριφορά του δυικού του. Δίνουμε επιπλέον δύο μεθόδους 

κατασκευής ενός συστήματος με δεδομένη forward και backward συμεπριφορά. 

 

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ 

πολυωνυμικοί πίνακες, κατασκευή συστήματος, στοιχειώδεις διαιρέτες, εξισώσεις διαφορών, 

γραμμικό σύστημα, ζεύγη Jordan, χρονοσειρές, μοντελοποίηση συστήματος. 
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ABSTRACT 

In the present Thesis we study the forward and backward- impulsive behavior of systems 

of algebraic difference equations in the form of AR-representations, that is ( ) ( ) 0A k   , where 

( ) [ ]r rA     and ( ) ( 1)k k   . This paper consists of two parts. 

In the first part we study the forward and backward solutions of AR-representations, 

which are depended upon the finite and infinite elementary divisors of the matrix Α(σ). 

In the second part we study the inverse problem. That is, given a given behavior, how to 

construct a system that satisfies it. First, we give a theorem connecting the backward behavior of 

a system to the forward behavior of its dual system. We also present two methods of constructing 

a system with a given forward and backward behavior.  

 

KEY WORDS 

polynomial matrix, forward behavior, backward behavior, Jordan pairs, elementary divisors, 

solution space, linear system, difference equations, system modeling, time series. 
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CHAPTER 1 

PRELIMINARY RESULTS 

 Let  be the field of real numbers and  s  be the Euclidean ring of polynomials with 

coefficients from . The field of all m n  matrices with elements from  s  is denoted by

 
m n

s


. A matrix whose elements are polynomials is called a polynomial matrix and can be 

expanded as follows:  

1

1 0( ) q q m n

q qA s A s A s A 

      ; , 0m n

i qA A   

The number q   is the highest degree occurring among the degrees of all the polynomial 

elements of A(σ). 

Example 1: The matrix  

3 2 2

3 2

2 1
( )

1 3

s s s
A s

s s

  
  

  
 

can be expanded as 

3 2 0

3 2 2

3 2

3 2

1 0 2 1 1 02 1

1 0 0 1 1 31 3

A A A

s s s
s s

s s

        
         

        

 

 

Definition 2 [Vardulakis 1991]: The degree of a polynomial matrix T(s), denoted by degT(s) is 

defined as the maximum degree among the degrees of all its maximum order non-zero minors.  

Definition 3 [Vardulakis 1991]: A matrix ( ) [ ]r rT s s   is called unimodular, if there exists a 

ˆ( ) [ ]r rT s s   such that ˆ( ) ( ) rT s T s I , or equivalently if detT(σ)= c .             

Definition 4 [Vardulakis 1991]: A matrix T(s) is called proper rational matrix if all its elements 

are proper rational functions or are equivalently in the form 
( )

( )

n s

d s
,  ( ), ( ) [ ]n s d s s  with 

   deg ( ) deg ( )d s n s . We can denote this by ( ) ( )r r

prT s s . 
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Definition 5 [Vardulakis 1991]: A matrix ( ) ( )r r

properT s s  is called ( ) unimodularpr s   or 

biproper rational matrix if there exists ( ) ( )r r

properT s s  such that ( ) ( ) rT s T s I  or equivalently 

iff deg[detT(s)]=0. 

  

Defition 6 [Vardulakis 1991]: Elementary row and column operations on any polynomial 

matrix ( ) [ ]r mT s s   are defined as: 

 The interchange any two rows or columns of T(s).  

 Multiplication any row or column of T(s) by a non-zero constant from . 

 Addition to any row(column) of T(s) another row(column) multiplied by any polynomial 

w(s)  

 

We are going to study the solution space of systems of difference equations that are in the 

form of an (Auto-Regressive) AR-representation, that is 

( ) ( ) 0A k     (1) 

where  0,k N q  , or equivalently 

1 0( ) ( 1) ... ( ) 0q qA k q A k q A k          

and  

1 0

1 0( ) ... [ ]q q r r

q qA A A A     

       (2) 

is a regular polynomial matrix, i.e.  det ( ) 0A    for almost every σ, 
1( ) rk  ,  0,k N  

and σ denotes the forward shift operator ( ) ( 1).k k    The number q is also called the lag of 

the system and it denotes the maximum number of time shifts.  

Example 7:  The difference equation ( 2) ( 1) ( ) 0x k x k x k      which describes the famous 

Fibonacci sequence can be written in AR form as 

2 ( ) ( ) ( ) 0x k x k x k    . 

 2 1 ( ) 0x k      

( ) ( ) 0x k    
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We define the behavior B of (1) as B={β(k):[0,N] 1 |r (1) is satisfied [0, ]k N 

Notice that we are interested in finding the behavior of (1) over a specified finite time interval

 0,k N , though N is considered to be large enough.  

Definition 8 [Vardulakis 1991]: Let A(σ) be an r r  regular polynomial matrix. There exist 

unimodular matrices ( ) [ ] , ( ) [ ]r r r r

L RU U       such that 

 

( )

1

( ) ( ) ( ) ( )

1,...,1, ( ), ( ),..., ( )

A L R

z z r

S U A U

blockdiag f f f

    

  

 


 

with 1 z r   and 1( ) / ( )i if f   i=z,z+1,…,r. ( ) ( )AS    is called the Smith form of A(σ). 

Proof:  Among the entries of A(σ), we find a non-zero one, which is a polynomial of the lowest 

degree with respect to σ and by interchanging rows and columns we move it to position (1,1). 

Denote this entry by 11( )a  . Assume at the beginning that all the entries of the matrix A(σ) are 

divisible without remainder by 11( )a  . Dividing the entries 1( )ia   of the first column and the 

first row 1 ( )ja   by 11( )a   we obtain 

1 11 1( ) ( ) ( )i ia a q      i=2,…,r 

1 11 1( ) ( ) ( )j ja a q     j=2,…,r 

where 1( )iq   and 1 ( )jq   are the quotients of the divisions. 

Subtracting from the i-th row (i = 2,3,…,r) the first row multiplied by 1( )iq   and, 

respectively from the j-th column (j = 2,3,…,m) the first column multiplied by 1 ( )jq  , we obtain 

a matrix of the form 

11

22 2

2

( ) 0 0

0 ( ) ( )

0 ( ) ( )

r

r rr

a

a a

a a



 

 

 
 
 
 
 
 

 

If the coefficient by the highest power of s of polynomial 11( )a   is not equal to 1, then to 

accomplish this we multiply the first row (or column) by the reciprocal of this coefficient.  

Assume next that not all entries of the matrix A(s) are divisible without  

remainder by 11( )a   and that such entries are placed in the first row and the first  
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column. Dividing the entries of the first row and the first column by 
11( )a   we obtain 

1 11 1 1( ) ( ) ( ) ( )i i ia a q r       i=2,…,r 

1 11 1 1( ) ( ) ( ) ( )j j ja a q r      i=2,…,r 

where 1 1( ), ( )i jq q   are the quotients and 1 1( ), ( )i jr r   are the remainders of the divisions. 

Subtracting from the j-th row (i-th column) the first row (column) multiplied by 1( )jq   (by 

1 ( )iq  ), we replace the entry 1( )ja   (
1 ( )ia  ) by the remainder 1( )jr   (

1 ( )ir  ).Next, among 

these remainders we find a polynomial of the lowest degree with respect to sand interchanging 

rows and columns, we move it to the position (1,1). We denote this polynomial by 
11( )r  . If not 

all entries of the first row and the first column are divisible without remainder by 11( )r  , then we 

repeat this procedure taking the polynomial 11( )r   instead of the polynomial 11( )a  . The degree 

of the polynomial 11( )r  is lower than the degree of 11( )a  .After a finite number of steps, we 

obtain in the position (1,1) a polynomial that divides without remainder all the entries of the first 

row and the first column. If the entry ( )ika   is not divisible by 11( )a   then by adding  

the i-th row (or k-th column) to the first row (the first column), we reduce this case to the 

previous one. Repeating this procedure, we finally obtain in the position (1,1) a polynomial  

that divides without remainder all the entries of the matrix. Further we proceed in the same way 

as in the first case, when all the entries of the matrix are divisible without remainder by 11( )a  . 

 If not all entries ( )ija   (i=2,…,r j=2,…,r) of the previous matrix are equal to zero, we 

find a non-zero entry of the lowest degree among them and by elementary row and column 

operations we bring it to position (2,2). Proceeding further as above we obtain a matrix of the 

form  

11

22

33 3

3

( ) 0 0 0

0 ( ) 0 0

0 0 ( ) ( )

0 0 ( ) ( )

r

r rr

a

a

a a

a a
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where 
22( )a  is divisible without remainder by  

11( )a   and all elements ( )ija   (i = 3,4,…,r; j = 

3,4,…,r) are divisible without remainder by 
22( )a  . Continuing this procedure, we obtain a 

matrix of the Smith canonical form.                 

 Polynomials ( )if   are called the invariant polynomials of A(σ). The zeros is   of 

( ) [ ]jf s s ,  j=z,z+1,…,r are called finite zeros of A(s). Assume that the partial multiplicities of 

each zero is  , i k  are 
, , 1 ,0 ...i z i z i rn n n     i.e. 

, ˆ( ) ( ) ( )i jn

j i jf s s s f s  , j=z,z+1,…,r ; ˆ ( ) 0j if s   

The terms ,( ) i jn

is s  are called finite elementary divisors of A(s) at is s . We also denote by n 

the sum of the degrees of the finite elementary divisors of A(s), i.e.  

,

1

: deg ( )
r k r

j i j

i j zj z

n f s n
 

 
  

 
  

Similarly, we can find ( ) , ( )r r r r

L RU U     having no poles and zeros at 0   such that  

0 1

( ) 0 0 0( ) ( ) ( ) ( ) 1,1,...,1, ( ) , ( ) ,..., ( )z z rn n n

A L RS U A U blockdiag


                  

0

( ) ( )AS


   is called the Smith form at the local point 0  . 

Lemma 9 [Vardulakis 1991]: The previous algorithm to compute the Smith form of a 

polynomial matrix A(s) can be summarized in the following steps. By doing biproper row and 

column operations, follow the next: 

Step 1: Move the element with the lowest degree to position [1,1]. 

Step 2: Reduce all elements of the first column to zero.  

Step 3: Reduce all elements of the first row to zero.  

Step 4: In case non zero elements appeared on the first column, go back to Step 2.  

Step 5: In case the element [1,1] does not divide all the elements of matrix A(s), then go back to  

Step 1. 

Step 6: We will end up with a matrix of the form 
1

1

0

0 ( )B s

 
 
 

. Go back to Step 1 and do the  

algorithm again with 1( )B s  as the initial matrix.  
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Example 10: Consider the matrix  

2

( )
1 1

P
 




 
  

  
 

There exist 2 2 2 2( ) [ ] , ( ) [ ]L RU U       such that  

( )

2

( )

1 0 0 1 1 1

0 1 0 11 1

L RA
U UPS  

 

  

        
       

        
 

We have defined the finite elementary divisors with the help of the Smith form of A(σ). 

Now we will define the infinite elementary divisors of A(σ). To do so, we first need to introduce 

the Smith form at infinity and the dual polynomial matrix of A(σ). 

Definition 11 [Vardulakis 1991]: Let A(σ) be an r r  polynomial matrix. Then there exist 

biproper matrices ( ) ( ), ( ) ( )r r r r

L pr R prU s U s     such that 

1

1
( )

1 1
U ( ) ( )U ( ) ( ) , , , , ,k

k r

qq

L R q q
S blockdiag     

 





 
    

 
 

where 

1 2 0kq q q     

1 1 0r r kq q q     

( ) ( )S  

  is called the Smith form of Α(σ) at infinity. The first k terms 1,..., kq q  are the poles and 

the latter (r-k) terms 1,...,k rq q  the zeros at    of A(σ).   

It is proved in [Vardulakis, 1991] that 1q q .   

There is a simple and pretty straightforward way of finding the Smith form at Infinity of a 

matrix. It is handy because it avoids performing row and column operations on a matrix A(s).  

Definition 12 [Vardulakis 1991, Jones 1998]: Let 
( )

( ) ( )
( )

n s
g s s

d s
   where n(s),d(s) [ ]s , 

( ) 0d s   and define the mapping  ( ) : ( )s      such that 
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This mapping is defined as a discrete valuation of ( )s .  

Lemma 13 [Vardulakis 1991, Jones 1998]: Let ( ) m nA s  , rank(A(s))=r and denote 

( )i A   as the least ( )   of all minors of A(s) of order i, where 0( ) 0A  . Then define 

1 0 1 1

2 1 2

1

( ) ( ) ( )

( ) ( )

...

( ) ( )r r r

q A A A

q A A

q A A

  

 

 

   

 

 

 

The Smith form at infinity of A(s) is given by 

 1 2

( ) ( ) 0rq q q

m r n rS blockdiag s s s 

     

 

Example 14: Consider the matrix 
2

2

1

1 1

s s
A

s

 
  

 
. Define 

 

 

0

1

2

( ) 0

( ) min 2, 1,0 2

( ) min 4 4

A

A

A









    

   

 

so we have that 1 20 ( 2) 2, 2 ( 4) 2q q          so  

2

( ) 2

0
( )

0

s
S

s
 



 
  
 

 

 

Definition 15 [Vardulakis 1991]: The dual polynomial matrix of A( ) r r   is defined as 

1

0 1

1
( ) : ( ) ...q q q

qA A A A   


       (3) 

 

Let ( ) [ ] , ( ) [ ]r r r r

L RU U       be rational matrices having no poles and zeros at σ=0 such 

that  

1 20

( )
( ) ( ) ( ) ( ) , ,..., r

L RS U U blockdiag   
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0

( )
( )S





 is the Smith form of ( )  at zero. The terms j  are the finite elementary divisors of 

( )  at zero and are called the infinite elementary divisors of A( ) . We denote by μ the sum of 

the degrees of the infinite elementary divisors i.e.  

1

:
r

j

j

 


 . 

The connection between the Smith form at infinity of Α(σ) and the Smith form at zero of the dual 

matrix is 

120

( )( )

1
( ) ( ) 1, , , , , ,k k rq q q qq q q qqS S blockdiag
     


  


      

So the orders of the infinite elementary divisors are given by 

1 0   

j jq q    2,3,...,j k  

j jq q    1,...,j k r   

Lemma 16 [Gohberg et al 1982]: Let 
1

1 0( ) ... [ ]q q r r

q qA A A A    

     . Let also n,μ  

the sum of degrees of the finite and infinite elementary divisors of Α(σ). Then 

n r q    

where q is the highest degree among all the polynomial entries of Α(σ).   

Jordan Pairs 

Let  ,i i i

i i

r n n n

s sC J
 

   be a matrix pair, where 
isJ is in Jordan form, corresponding to 

the zero is  of A( ) of multiplicity in .This means that 
isJ  consists of Jordan blocks with sizes 

equal to the partial multiplicities of  is . This is called an eigenpair of A( ) (or a Jordan pair) 

corresponding to 0s  iff 

 

1

...

i

i i

i

i i

s

s s

i

n

s s

C

C J
rank n

C J


 
 
 

 
 
 
 

 or equivalently written as  
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1

0

i

i i

n
k

s s i
k

rankcol C J n



  

 1

1 1 0... 0
i i i i i i i

q q

q s s q s s s s sA C J A C J AC J A C

      or equivalently  

0

0
i i

q
k

k s s

k

A C J


  

Taking an eigenpair for each finite eigenvalue is  of  A( )  we can create the finite spectral pair 

of A( )   ,r n n n

F FC J    , where  

 1 2, ,...,FC C C C  ;  1 2, ,...,FJ blockdiag J J J  

The finite spectral pair of A( )  satisfies the same properties as the eigenpairs of A( )  e.g.  

 
1

0

in
k

F F k
rankcol C J n




 ,     

0

0
q

k

k F F

k

A C J


  

An eigenpair of the dual matrix ( )  corresponding to the eigenvalue 0s   is called an infinite 

spectral pair of A( )  and satisfies the following 

 
1

0

k

k
rankcol C J






  
 ,    

0

0
q

q k

k

k

A C J 

 



 . 

An algorithm for the construction of a finite Jordan pair was given in [1].  

Theorem 17 [Vardulakis 1991]: Given the matrix ( ) r rA    we can construct a finite Jordan 

pair by following these steps: 

Step 1: Compute the unimodular matrices ( ) [ ] , ( ) [ ]r r r r

L RU U       such that 

( ) ( ) ( ) ( ) ( )A L RS U A U      

Step 2: Let 
1( ) r

ju    j r  be the columns of ( )RU   and  ( ) ( ) / ( )q q q

j ju d d u  . 

Compute the vectors 

( )

,

1
( ), 1,2,...,

!

i q

j q j iu i
q

     

where j=z,z+1,…,r and 0,1,..., 1ijq n   and i  are the zeros of Α(σ) with partial multiplicities 

10 ...iz iz irn n n    . 

Step 3: Define the matrices 
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,

, 2 , 1, ,0 ,1 , ,
i j

i j i j

r ni i i i

i j j j j n j nC    
 

  
 

 

, ,

,

1 0 0

0 0 0

:

0 0 ... 1

0 0 ... 0

i j i j

i

i

n n

i j

i

i

J











 
 
 
  
 
 
  

 

and  

, , 1 ,: ir m

i i z i z i rC C C C



     

, , 1 ,: i im m

i i z i z i rJ blockdiag J J J



     

where , , 1 ,i i z i z i rm n n n    . 

Step 4: The pair (C,J) where  

 1 2: r nC C C C

   

 1 2: n nJ blockdiag J J J

   

and 1 2 deg ( )
r

k j

j z

n m m m f 


 
      

 
  is a Jordan pair of the polynomial matrix Α(σ). 

Example 18: Consider the matrix 

3s+1       s
( )

0 s+1


 
   

 
 

We can find matrices 
2 2 2 2( ) [ ] , ( ) [ ]L RU U       such that 

( ) ( ) ( ) ( ) ( )A L RS U A U      

( )

3 2 3

2

( )( )

1 0 1 0 s+1       s 3 1

0 ( 1) 1 1 0 s+1 1 1

AS

s s s

s s s


 

       
      

        

 

so the matrix has one finite elementary divisor with multiplicity 2.  
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Let 
3

(0)

1
1

s
u

s

 
  

 
 be the second column of ( )RU   that corresponds to the zero at s-1. Compute 

the vectors 

1 (0)

1,0 1

11
( 1)

00!
u

 
    

 
 and 

2

1 (1)

1,1 1

1

331
( 1)

11! 1
s

s
u



   
      

  
 

So the matrix pair (C,J) with  1 1

1 1,0 1,1

1 3

0 1
C C  

 
    

 
 and 1

1 1

0 1
J J

 
   

 
 is a finite 

Jordan pair of A(s). We can easily check that it satisfies: 

2 1

1 3

0 1

1 4

0 1

C
rank

CJ 

 
 

       
 

 

 

3 2

3 2 1 0

0 0

0 0
A CJ A CJ ACJ A C
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CHAPTER 2 

SOLUTIONS OF DISCRETE TIME ALGEBRAIC DIFFERENCE 

EQUATIONS 

In this chapter we will study the connection between the finite and infinite elementary divisors 

and the behavior of a system of difference equations. More spec ifically, we will see how f.e.ds 

are connected with the forward behavior of a system and how i.e.ds are connected with the 

backward behavior. These results have been previously studied and presented by Gohberg in 

1982 and Karampetakis in 2004. 

Finite elementary divisors and solutions of discrete time AR-representations 

Let us assume that A( )  has κ distinct zeros 1 2, ,...,     where for simplicity of notation 

we assume that   , 1,2,...,i   and let  

 ( ) 1( ) ( ) ( ) ( ) 1,1,...,1, ( ), ( ),..., ( )C

A L R z z rS U A U blockdiag f f f         . 

Assume that the partial multiplicities of the zeros    are  
, , 1 ,0 ...i z i z i rn n n     i.e. 

, ˆ( ) ( ) ( )i jn

j i jf f      j=z,z+1,…,r with ˆ ( ) 0j if   . Let 
1( ) [ ]r

ju     , j  be the 

columns of ( )RU   and 
( ) ( ) : ( / ) ( )q q q

j ju u     , 
, 10,1,..., i jq n  . Let also 

( )

,

1
: ( )

!

i q

j q j ix u
q

  1,2,...,i   and j=z,z+1,…,r. 

Define the vector valued functions 

1

, , , 1 ,0( ) : ...i k i k i k q i

j q i j q i j q i j

k
k x k x x

q
    



 
     

 
  if 0i   

, , , 1 ,0( ) : ( ) ( 1) ... ( )i i i i

j q j q j q jk k x k x k q x           if 0i   

i k ;  j=z,z+1,…,r;  
, 10,1,..., i jq n   

where by δ(k) we denote the known Kronecker delta function. Let 

, 2 , 1, ,0 ,1 , ,( ) : ( ) ( ) ... ( ) ( )
i j i j

i i i i

i j j j j n j nk k k k k   
 

  
   

, 2 , 1, ,0 ,1 , ,: ...
i j i j

i i i i

i j j j j n j nC x x x x
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, ,

,

1 0 0

0 0 0

:

0 0 ... 1

0 0 ... 0

i j i j

i

i

n n

i j

i

i

J











 
 
 
  
 
 
  

 

where 1,2,...,i  , j=z,z+1,…,r and 

, , 1 , 1 ,( ) : ( ) ( ) ( ) ( )F

i i z i z i r i rk k k k k 
         

, , 1 , 1 ,: ( ) ( ) ( ) ( )F

i i z i z i r i rC C k C k C k C k 
     

, , 1 , 1 ,( ) ( ) ( ) ( )F

i i z i z i r i rJ blockdiag J k J k J k J k 
     

Finally let 

1 2 1( ) : ( ) ( ) ( ) ( )D F F F F

F k k k k k 
         

1 2 1: ( ) ( ) ( ) ( )D F F F F

FC C k C k C k C k 
     

1 2 1( ) ( ) ( ) ( )D F F F F

FJ blockdiag J k J k J k J k 
     

The solution space of the system (1) is:  

 ( )
k

D D D D

F F F FB k C J    

Example 19: Consider the matrix 
2 1

( )
1

P
 


 

 
  

 
. It’s Smith form is  

 

2

2( ) 2

( ) ( )

1 0 0 1 1 11
( )

1 1 110 1

L R

A

U U

S 

 

 


    

        
                  

 

The second column 2

1
( )u






 
  

 
 corresponds to the finite elementary divisors σ and 

2( 1)  . 

Thus 1 0   with 1,2 1   and 2 1   with 2,2 2  . 

We have: 

1 (0)

2,0 2 1

0 1 11
( )

0 00!
u 

    
     

   
 

for the first zero of A(σ) and for the second zero of Α(σ): 



Modeling Of Discrete-Time AR-Representations 

 

26 
 

2 (0)

2,0 2 2

1 1 01
( )

1 10!
u 

   
     

    
 

(1)

2 (1)

2,1 2 2

1

1 11
( )

11!
u




 




   
     

    
 

Create the pairs  

   1

1 1 2,0

1
( , ) 0 0

0
C J 

   
    

  
 and  2 2

2 2 2,0 2,1

1 1 0 1 1 1
( , ) , ,

0 1 1 1 0 1
C J  

        
         

         
 

Now we create the matrices  

 1 2

1 0 1

0 1 1

D

FC C C
 

   
    

and  1 2

0 0 0

0 1 1

0 0 1

D

FJ blockdiag J J

 
 

 
 
 
 

 

We also define the functions 

1

2,0 1

1 1
( ) ( ) ( )

0 0
k k k  

      
       
    

 

2

2,0

2

2 1

2,1

1 1
1

1 1 1 0 1
( ) ,

1 1 10 1 0 1
1

1 1 1 1

k

k

k k

k k



 

   
    

           
        

                
          

          

 

2

1
( ) ,

1 1

k
k

k

    
      

      
 

So the solution space of A(σ)β(k)=0 is spanned by the vectors: 

   1 2

1 1
( ) ( ) ( ) ( ), ,

0 1 1

k
D D D

F F F

k
k k k k C J

k


       
           

        
 

 

Infinite elementary divisors and solutions of discrete time AR-representations 

Let ( ) , ( )r r r r

L RU U     be rational matrices having no poles and zeros at σ=0 

such that  

1 20

( )
( ) ( ) ( ) ( ) , ,..., r

L RS U U blockdiag   
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121, , , , , ,k k rq q q qq q q qblockdiag           

Where 0

( )
( )S





 is the Smith form of ( )  at zero. Let also  1 2( ) ( ) ( ) ( )R rU u u u     

where 
1( ) ( )r

ju R    and 
( ) ( )i

ju  , 
( ) ( )i   be the i-th derivatives of ( )ju   and ( )  

respectively, for  i=0,1,…,
j  and j r . Define 

( )

,

1
: (0)

!

i

j i jx u
i

  for 0,1,..., ji   and j r . Then for initial conditions  

,

1

( )

( 1)

( 1)
j

j i

q

x

xq





 

  
  

     
  
  

       

 

we obtain respectively the linearly independent backward solutions  

, , , 1 ,0( ) : ( ) ( ( 1)) ... ( ( ))B

j i j i j i jk x N k x N k x N k i              i=0,1,…,
j ; j r  

Let 

2 1,0 ,1 , ,( ) : ( ) ( ) ( ) ( )
j j

B B B B B

j j j j jk k k k k    
 

  
   

,0 ,1 , 1j

B

j j j jC x x x  
 
   

0 1 0 0

0 0 1 0 0

:

0 0 ... 0 1

0 0 ... 0 0

j jB

jJ
 

 
 
 
  
 
 
  

   where j r  and 

1( ) : ( ) ( ) ( )D D D D

B k k rk k k k
        

1( ) : ( ) ( ) ( )D D D D

B k k rC k C k C k C k
     

1( ) : ( ) ( ) ( )D D D D

B k k rJ k blockdiag J k J k J k
     

where 

1

:
r

j

j

 


  

The solution space spanned by the i.e.d. of (1) is 
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 ( )
N k

D D D D

B B B BB k C J


    

Example 20: Consider the polynomial matrix 

2 2

1
( )

1
A

 


  

 
  

  
 

  Its dual matrix is  

2

2

2

1
( )

1 1

  
 

  

  
      

    
 

and has the Smith form at zero 

2

0

2( ) 2

1
0

1 0 1 1 2

0 1 1 11 1
1

2 2L

R

U

U

S


  

    




 
      

       
             

 

 

Therefore ( )  has a zero at σ=0 of multiplicity 2. Let 2

1

2
( )

1 1

2 2

u 



 
 

  
   
 

 be the second 

column of RU . Define 

2,0 2

1

1 2
(0)

10!

2

x u

 
 

   
  
 

 

(1)

2,1 2

0
1

(0) 1
1!

2

x u

 
  
 
 

 

and  
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 2,0 2,1

1
0

2

1 1

2 2

D

BC x x

 
 

   
  
 

 

0 1

0 0

D

BJ
 

  
 

 

The solution space 
D

BB  is spanned by the columns of the matrix: 

 
 

1
0

( ) ( 1)2
( )

1 1 0 ( )

2 2

N k
D D D

B B B

N k N k
k C J

N k

 





 
     

     
   

 

 

 

 

1 1
( ) ( 1)

2 2

1 1 1
( ) ( 1) ( )

2 2 2

N k N k

N k N k N k
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CHAPTER 3 

CONSTRUCTION OF A SYSTEM OF ALGEBRAIC DIFFERENCE EQUATIONS 

WITH GIVEN FORWARD/BACKWARD BEHAVIOR 

In this section we are going to study the inverse problem i.e. given a specific forward and 

backward behavior, how to construct the polynomial matrix A(σ), so that the AR-representation 

Α(σ)β(k)=0 has the given behavior. On this subject we already have results regarding the 

forward behavior but there are no results concerning the backward one. It must be mentioned 

though that the analog problem for continuous time systems has been examined in [2]. We will 

first present and produce results concerning the forward and backward behavior separately and 

then we will study the case where both a forward and backward behavior is given. 

Theorem 21 [Gohberg 1982, Karampetakis 2004]: Suppose that a finite number of functions 

of the form 

1

, 1, 0, ,

0

( ) : ... , 0
i

i i

i i

q
k q k q jk k

i i q i i q i i i i j i i

ji i

k k
k k

k q k q j
           





   
        

     
  

    , , 1 , 2 ,0( ) ( ) ( 1) ... ( 1) , 0
j j jj q j q j q j j ik k x k x k q x              

are given, where ,j i  ,  0 ij q   and 1,2,...,i l . Let 

1 ( 1)

0, 1, 1, ,: i

i i

q

i i i q i q iC      


    , 

( 1) ( 1)

1 0 0

0 1 0 0

:

0 0 ... 1

0 0 ... 0

i i

i

i

q q

i

i

i

J









  

 
 
 
  
 
 
  

 

and 

  1

1 2 1: n

l lC C C C C 

  , 

1

2

0 0

0 0

0 0

n n

l

J

J
J

J



 
 
  
 
 
 

 

where 
1

: ( 1)
l

i

i

n q


   

Let a be a complex number different than   and define 



Modeling Of Discrete-Time AR-Representations 

 

31 
 

 2

1 1( ) ( ) ( ) ( ) ... ( )q q

r n q qA I C J aI a V a V a V   

          

where ( , )q ind C J  and 
1 2 qV V V    is the generalised inverse of 

1

1

1

( )

( )

n

q

q

n

C

C J aI
S

C J aI







 
 


 
 
 

 

. 

Then ( )i k  are solutions of ( ) ( ) 0A k   . Furthermore, q is the minimal possible lag of any 

n n  matrix with this property. 

What we need to mention here is that although we created an AR-representation that has 

the solution ( )i k ,  the vectors ( )i k  does not necessarily span the whole solution space of 

A(σ). This depends on the dimensions of the matrix pair (C,J). According to Lemma 16, the sum 

of the i.e.ds and the f.e.ds is n r q   . This means that in order for a pair (C,J) to fully 

describe a system, in terms of its finite and infinite elementary divisors, it must be of dimensions 

n rq  and  rq rq . So in case that the matrix pair has these dimensions, then the vectors ( )i k  

span the hole solution space of A(σ). But in any other case, the system will exhibit some extra 

linearly independent behavior. This holds true for all the algorithms for construction of a system 

with given behavior that will be presented in this paper.  

For an analytic proof of Theorem 21, one may refer to [Gohberg et al, 1981].  

Example 22: We are looking for the matrix Α(σ), knowing that the solution space is 

 2

1
2

2 4 1 2 4
1

0 2 1 2 0 2 3 2 2 0 2
2

0 1 0 2 0
1

2

k k k k k kB k k k k

 
  
          
                        

                      
 

. Doing some 

calculations we can rewrite it as 

1 1 2

2 4 2 2 4 2
( 1)

0 2 1 2 0 2 3 2 1 2 0 2
2

0 1 0 2 1 0

k k k k k kk k
B k k  

           
           

              
           
           

 

So now it’s easier to see that 
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1,2 1,1 1,0

1 2

1

2 4 2

( ) 3 2 1 2 0 ( 1)2

2 1 0

k k kk k k k

  

  

     
     

        
     
     

 

Define 

 1 1,0 1,1 1,2

2 4 2

0 1 3

0 1 2

C C   

 
 

  
 
 
 

, 

2 1 0

0 2 1

0 0 2

J

 
 

  
 
 

 

We now must find q=ind(C,J). We can see that  det C 2 0   ,  so q=1. 

1

1

1
3 5

2

0 2 3

0 1 1

V C

 
 

 
   

 
 
 

 

For 1 2a    we have  

   
1

3 3 1( ) 1 1A C J I V 


     = 

 

1
1

3 5
1 0 0 2 4 2 1 1 0 2 2 2 4 42

0 1 0 0 1 3 0 1 1 1 0 2 3 0 1 1

0 0 1 0 1 2 0 0 1 0 1 1 0 1 2 3

  

 

 


 

           
       

            
                 

 

 

with ( )

3

1 0 0

0 1 0

0 0 ( 2)

AS 



 
 


 
  

. The pair  ,C J  is a finite Jordan pair for the matrix A(σ) that 

we created, because indeed it satisfies the 2 properties of a Jordan Pair, which are 

1 0ACJ A C 

1 2 4 2 4 2 2 1 0 2 2 4 2 4 2 0 0 0

0 0 1 0 1 3 0 2 1 0 1 1 0 1 3 0 0 0

0 1 2 0 1 2 0 0 2 0 1 3 0 1 2 0 0 0
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Of course, the first property 

1

...

i

i i

i

i i

s

s s

i

n

s s

C

C J
rank n

C J


 
 
 

 
 
 
 

, (in this example 
2

3

C

rank CJ

CJ

 
 


 
 
 

) is always 

satisfied, because it is a necessary condition in the creation of the matrix A(σ). 

 

Example 23: We are looking for the polynomial matrix Α(σ), with solution space spanned by 

1 1 1

1 1 0
k

     
     

      
 

We can see that 

1,1 1,0

1

1 1
( )

1 0
k k

 


   

    
   

 

Define 

 1,0 1,1

1 1

0 1
C  

 
   

 
 and 

1 1

0 1
J

 
  
 

 

Now we must find q=ind(C,J). We can see that  det C 1 0   , so q=1 

1

1

1 1

0 1
V C  
   

 
 

For 2 1a    we have  

   
1

2 2 1( ) 2 2A C J I V 


     = 

 
1

1 0 1 1 1 1 1 1 1 2
2

0 1 0 1 0 1 0 1 0 1

 





          

           
           

 

with Smith form  

( ) 2

1 0

0 ( 1)
AS 



 
  

 
. 

Just by looking at the Smith form we can be sure that our algorithm works, but we can also check 

that that the finite Jordan pair  ,C J  satisfies  

 1 0

1 1 1 1 1 1 1 2 1 1 0 0

0 1 0 1 0 1 0 1 0 1 0 0
ACJ A C
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 2
C

rank
CJ

 
 

 
 

 

Example 24: Let  

1,2 1,1 1,0 1,2 1,1 1,0

3 2 1 3 2 1
( 1)

( ) 3 ( ) 1 ( 1) 2 ( 2) 3 ( ) 1 ( 1) 2 ( 2)
1 2

2 3 1 2 3 1

x x x x x x

k k k
x k k k k k k k     

           
           

                    
                       

 . 

We want to find an AR-representation that has x(k) as its solution. We begin by creating the pair 

1 2 3 0 1 0

2 1 3 , 0 0 1

1 3 2 0 0 0

C J

   
   

 
   
      

 

Now we must find the lag of the matrix. We know that q=ind(C,J).  

Since detC=0, the assumption that q=1 is rejected. 

Let q=2, the matrix 

2 1

1 2 3

2 1 3

1 3 2

0 1 2

0 2 1

0 1 3

C C
S

CJ CJ

 
 
 
    

       
     

 
   

 

has full column rank, so q=2. Let a=1 and compute A(σ) by 

   
2 2

3 3 2 1( ) ( 1) ( 1)C J I V V  


         

 

where  
1

1 2 1( 1)

C
V V

C J





 
  

 
=

345 465 15 37 331 897

2656 2656 1328 664 2656 2656

497 23 599 61 115 761

2656 2656 1328 664 2656 2656

65 1 75 19 5 169

664 664 332 166 664 664
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A(σ)= 

 

     

2 2 2

22 2

2 2 2

1007 1382 267 1324 1657 333 1641 463 1178

2656 2656 2656

11 117 67 502143 2458 315 428 2999 771

2656 2656 2656

1 1 1
69 218 287 156 283 127 243 37 458

664 664 664

s s s s s s

s ss s s s

s s s s s s

        
 
 
       
 
 
 

       
 
 

 

The system generated by the equation A(σ)β(k)=0 has indeed the solution we want. We can 

check that (C,J) is a Jordan pair of A(σ) corresponding to the f.e.d. zero, because 

2

2 1 0

0 0 0

0 0 0

0 0 0

A CJ ACJ A C

 
 

  
 
 
 

 ; 
2

3

C

rank CJ

CJ

 
 


 
 
 

 

On the other hand, if we take the determinant of matrix A(σ), we see that 

  31
det ( ) ( 331 103 )

228
A       . 

The determinant as we know has the same elements as the Smith form of A(σ). This means that 

our system has an extra solution corresponding to the f.e.d. 
331

103
   

That is the reason we cannot state that ( )x k  can span the whole solution space of A(σ). 

Based on theory (Lemma 16 and [Gohberg et al 1981]), in order for the matrix pair (C,J) 

to contain of the spectral information for A(σ)β(k)=0, it must be of dimensions:  

: 3 6

: 6 6

C r rq

J rq rq

  

  
 

So what one can do in order to control the behavior of the system, and not let it be arbitrarily 

created, is to create the pair 

1

1

1

0 1 0 0 0 0

0 0 1 0 0 0
1 2 3

0 0 0 0 0 0
2 1 3 ;

0 0 0 1 0
1 3 2

0 0 0 0 1

0 0 0 0 0

a b c

C d e f J

g h i






 
 
  
  

     
     
 
  

 

and add a behavior of our choise. Of course there are other possible forms for J, like  
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1

2

2

0 0

0 1

0 0







 
 
 
 
 

 or 

1

2

3

0 0

0 0

0 0







 
 
 
 
 

 

Another way to create a system matrix A(σ) having ( )x k  as the only behavior, we need to 

choose the right value for a. 

Using Mathematica, we compute the pseudoinverse matrix, but now considering ‘a’ (named ‘b’ 

in Mathematica) as a variable. The string of commands for these computations in Mathematica is  

 

Starting the algorithm again and evaluating A(σ) for the new value of a (b in Mathematica) we 

finally get 

c={{3, 2, 1}, {3, 1, 2}, {2, 3, -1}}  

j = {{0, 1, 0}, {0, 0, 1}, {0, 0, 0}}  

MatrixRank[ArrayFlatten[{{c}, {c.j}}]]  

m = ArrayFlatten[{{c}, {c.MatrixPower[j - b IdentityMatrix[3], -1]}}]  

m1 = Simplify[PseudoInverse[m], b \[Element] Reals]  

v1 = Take[m1, {1, 3}, {1, 3}] 

v2 = Take[m1, {1, 3}, {4, 6}] 

a = IdentityMatrix[3] - c.MatrixPower[j - b IdentityMatrix[3], -2].((s - b) v2 + (s - b)^2 v1) // Simplify

The result of this computation is too long to be presented here. We 

proceed to compute the determinant of A(σ). 

Det[a] // Factor  

which gives the result 

 
 

3 2

3 2

88 111 132 37 66

2 44 37 33

s b b s bs

b b b

   

 
 

In order for our system to have only zero as an i.e.d. the quantity 

37 66s as   must be zero, thus 

Solve[-37 s - 66 b s == 0, b]  

37
{{b  -( )}}

66
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A(σ)= 

2 2 2

2 2

9739771035 16744593164 1477832928 37259417249 66950044420 869238084 41279469321 72512689984 1999546692

9359753063 19882245334 5683972800 28649926839 86269262900 3343223400 57014519853 973

s s s s s s

s s s s

      

       2

2 2 2

90199054 7690564200

5219970989 5933641826 6025011168 8084696581 12434665480 3543816804 19957001355 6879278206 8151998052

s s

s s s s s s

 
 

 
         

 

with 9 3( ) 10.6 10det A s   , which means that the only f.e.d. is zero. 

 

 

We shall now extend this theorem to the case of backward solutions. 

As we have already shown, the smith form of the dual matrix of A(σ) at zero is 

 120

( )
( ) ( ) ( ) ( ) 1, , , , , ,k k rq q q qq q q q

L RS U U blockdiag w w w w

      


     

( ) ( ) ( ) j

j ju v w


     j=2,…,r 

,j jq q   , j=2,…,k ; ,j jq q   , j=k+1,…,r and ( ), ( )j ju v   are the j-th columns of 

( )RU   and 
1( )LU  
 respectively. 

Lemma 25: Let 
( ) ( )i

ju  , 
( ) ( )i   be the i- th derivatives of ( )ju   and ( )  with respect to σ  

for i=0,1,…,
j  and j=2,…,r. The vectors ,j ix  as we have already seen, defined by: 

( )

,

1
: (0)

!

i

j i jx u
i

  for i=0,1,…, 1jq q   and j=2,…,r. 

form Jordan Chains corresponding to ( )  and thus satisfy the conditions 

0

1

0 1

1

0 1

(0) 0

(0) (0) 0

...

1
(0) ... (0) 0

( 1)!

j

j

j

j j

q q

j jq q

j

x

A x x

A x x
q q

 

 

 

  

   
 

 (4) 

Proof: Since ( )RU   has no poles or zeros at w=0, (0) 0ju   and for w=0 

(0) (0) 0ju  , j=2,…,r  (5) 

taking the first derivative of (5) with respect to w we have 
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1(1) (1) (1)( ) ( ) ( ) ( ) ( ) ( )j j

j j j j jw u w w u w v w w v w w
 




     which for w=0 gives 

(1) (1)(0) (0) (0) (0) 0j ju u   , j=2…,r 

In the same fashion, we take the derivative of the above equation and evaluate the result for w=0. 

We obtain: 

(2) (1) (1) (2)(0) (0) 2 (0) (0) (0) (0) 0j j ju u u       

(2) (1)

,0 ,1 ,2(0) 2 (0) (0) 0j j jx x x      j=2,…,r 

Continuing this procedure until the ( 1)jq q   derivative of (5) we obtain the equations of our 

lemma.  

Now from (3) we can easily get that 

( ) (0) !p

q pp A    p=1,2,,…,q 

( ) (0) 0p    1,..., 1jp q q q     

So the equations (6) of lemma transform to 

,0

(1)

,0 ,1

( ) ( 1)

,0 ,1 ,

( ) ( 1) (1)

,1 ,2 , , 1

( ) ( 1)

, 1 ,

(0) 0

(0) (0) 0

1 1
(0) (0) ... (0) 0

! ( 1)!

1 1
(0) (0) ... (0) (0) 0

! ( 1)!

1 1
(0) (0)

! ( 1)!j j

j

j j

q q

j j j q

q q

j j j q j q

q q

j q j q

x

x x

x x x
q q

x x x x
q q

x x
q q











 

  

      


        


   


(1)

, 2 , 1... (0) (0) 0
j jj q q j q qx x       

 

for j=2,…,r 

These equations can be summarized in matrix form as 
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,0

,11

, 11 2 3

,0 1 2 1

, 10 1 2 1

, 10 1 2 1

0 0 0 0 0 0 0

0 0 0 0 0 0

0

0 0 0 0 0

0 0 0

0 0 0 0

0

0 0
j

jq

jq q

j qq

j qq q

j qq q q

j q qq q

xA

xA A

xA A A A

xA A A A A

xA A A A A

xA A A A A







 

 

  
  
  
   
   
     
  
   
  
  

  
  





 
 


(6)
 

 

Theorem 26: The vector 
, 1 , 2 ,0( ) ( ) ( 1) ... ( 1)

j jj j q q j q q j jk x N k x N k x N k q q   

                 (7) 

is a solution of the AR-representation A(σ)β(k)=0 iff 

,0 ,1 , 1 , 1( ) ( 1) ( 2) ( ) ( )
j jj j j j j j q j q qk x k q q x k q q x k q x k                    (8) 

is a solution of the dual homogenous system ( ) ( ) 0k    

Proof: ( ) First assume that (7) is a solution of (1), then the equations (6) hold true. We will 

show that (8) is a solution of (3), i.e. 

( ) ( ) 0k    

. or equivalently, taking the Z-transform, that 

ˆ( ) ( ) ( )z z b z   

where ˆ( )b z  is defined by the initial values of ( )k ,  

 

0

1 01

1 2 0

0 0 (0)

0 (1)ˆ( )
0

( 1)

q q

r r r

q q

A

A A
b z z I z I zI

A A A q
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  1 21

0 1 1 ,0 ,1 , 1 , 1( ) ( ) j j

j j

q q q qq q q

q q j j j q j q qz z z A z A zA A x z x z x z x
      

             

 

0
, 1

1 0

, 111 1
1 0

1

,1

,0

0 0

0

0

0 0

j

jj

j q q

j qq qq q
q qr r r r r r

q

j

j
q

A
x

A A

x
A A Az I z I zI I z I z I

A A
x

x
A

 

   


 
  
 

 
 

 
 

 
   
 

 
 

 
 

 
 

  
 

 

 

, 1
0

, 21 01

1 2 0 ,

0 0

0

j

j

j

j q q

j q qq q

r r r

q q j q

xA

xA A
z I z I zI

A A A x

 

 

 

  
  
     
      

 

 

, 11 0

1 0

11
1 0 ,

,1

,0

0 0

0

0 0 0

0

0

0 0 0

j

j

j q qq q

q

q qq
q qr r r r j q

q

j

q j

xA A A

A A A

A A AI z I z I z I x

A

x

A x

 

   


  
  
  
  
  

   
  
  
  
   

  

 

 

, 1
0

, 21 01

1 2 0 ,

0 0

0

j

j

j

j q q

j q qq q

r r r

q q j q

xA

xA A
z I z I zI

A A A x
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, 1

1

1 2 31 2

,
0 1 2 1

0 1 2 1

,1

,0
0 1 2 1

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0

0 0 0

0 0 0

0

0 0

j

j j

q
j q q

q q

qq q q q q

r r r r j q
q q

q q q

j

j
q q

A
x

A A

A A A A
z I z I z I I x

A A A A A

A A A A A
x

x
A A A A A

 



      



 



 
  
  
  
 
 

  
 
 
 
 

  
 

0 (6)









 

, 1
0

, 21 01

1 2 0 ,

0 0

ˆ( )
0

j

j

j

j q q

j q qq q

r r r

q q j q

xA

xA A
z I z I zI b z

A A A x

 

 

 

  
  
     
      

 

So we have that 

   

, 1
0 0

, 21 0 1 01 1

1 2 0 1 2 0,

0 0 0 0 (0)

(1)

0 0

( 1)

j

j

j

j q q

j q qq q q q

r r r r r r

q q q qj q

xA A

xA A A A
z I z I zI z I z I zI

A A A A A A qx







 

  

   

      
      
            
                 

This equation holds true, because from the way we have defined ( )j k , we can see that 

,0 ,1 , 1 , 1(0) 0 0 ... (0)
j jj j j j q q j q qx x x x          

, 2 , 2(1) 0 ... (1 1) ... 0
j jj j q q j q qx x            

… 

, ,( 1) 0 ... ( 1 1) ... 0
j jj j q j qq x q q x            

Thus, the right and left side of the equation are equal, so ( )j k  is a solution of ( ) ( ) 0k   . 

( ) Now we will show that if ( )j k  is a solution of ( ) ( ) 0k   , then ( )j k 
 is a solution of 

A(σ)β(k)=0. 

We will apply the Z-transform ( ) ( )
N

kz k z  



 . 

 ( 1) ( 1)
N

kZ k k z  



   . Let k+1=m and we have 
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1
1( 1) ( )

N N
k mk z m z 


  

 

     

( ) ( 1)

( ) ( 1)

N
m N

N

z m z N z

zB z N z

 



 





   

  


 

Likewise, we have 

  2 1( 2) ( ) ( 1) ( 2)N NZ k z B z N z N z           

……… 

  1( ) ( ) ( 1) ... ( )q N q NZ k q z B z N z N q z             

So applying this transform to the equation ( ) ( ) 0jA k     we have 

 ( ) ( ) 0jZ A k      

  11

1 1 0 , 1 ,0
ˆ... ... ( )j

j

N q qq q N

q q j q q jA z A z A z A x z x z z
    

            

where ˆ( )z  is the initial conditions vector and is equal to: 

 

1 1

21 1

( )

0
ˆ( )

( 2)

0 0 ( 1)

q q j

qN N N q

j

q j

A A A N q

A A
z z z z

N

A N











     





  
  
  
   
      

 

The values ( q), .. ( 1)j j      are defined outside our given interval, but since 

A(σ)β(k)=0 

1 1 0( ) ( 1) ... ( 1) ( ) 0q qA k q A k q A k A k              

for k=N-q+1,…,N we have: 
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0

0

( 1)
0 0

0
0

( )
0

0
0 0

( )

j

q

j

q

j

N q
A A

N

A A
N q













  
  

   
               

   

 

More analytically: 

For 1k N q    we have: 

 
1 0

1 0

( 1) ( ) ... ( 1) 0

( 1) ( ) ... ( 1)

q q

q q

A N A N A N q

A N A N A N q

  

  





       

      
 

For 2k N q    we have 

 1 2 0( 2) ( 1) ( ) ... ( 2)q q qA N A N A N A N q              

Continuing in this fashion we eventually have that 

 

 

1 1

21 1

0 1 1

0 21

0

( )

0
ˆ( )

( 2)

0 0 ( 1)

( 1)

0

( 1)

0 0 ( )

q q

qN N N q

q

q

qN q

r r

A A A N q

A A
z z z z

N

A N

A A A N q

A A
z z I I

N

A N
















     



 

  
  
   
  
      

   
  
   
  
  

  

 

Now considering the left side of the equation: 

  11

1 1 0 , 1 ,0
ˆ... ... ( )j

j

N q qq q N

q q j q q jA z A z A z A x z x z z
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1

0 1 ,0

0 ,11

, 110 2

0 1

0

0 0 0

0 0

0

0 0 0 0

0 0

0 0

0 0 0 0 0

j

j

j

q

q q

j

jq q qN

r r r

q q q

q j q q

q

A

A A

A A x

A x
z z I zI I

A xAA A

A A

A



  

 

 



 
 
 
 
 

  
  
  
  
  
  

 
 
 
 
 

ˆ( )z


  




 

The part above the line multiplied by 

,0

,1

, 1j

j

j

j q q

x

x

x  

 
 
 
 
 
 
 

 equals the zero vector, as we know from (6).  

So we end up with: 

 

, 1
0 1 1

,0 21

0 , 1

0
ˆ( )

0 0

j

j

j

j q
q

j qqN q

r r r

j q q

xA A A

xA A
z z I zI I z

A x






 

 

  
  
       
  
   

 

 

 

, 1
0 1 1

,0 21

0 , 1

0 1 1

0 21

0

0

0 0

( 1)

0

( 1)

0 0 ( )

j

j

j

j q
q

j qqN q

r r r

j q q

q j

qN q

r r

j

j

xA A A

xA A
z z I zI I

A x

A A A N q

A A
z z I I

N

A N










 

 





 





  
  
     
  
   

   
  
  
   
   

  

 

This equation holds true because 
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, 1 , 1

, 1 , 2 ,0 , 1

0
0 0

( 1) 0 0 ... (0) 0 .. 0

( ) ( ) ( 1) ... ( 1)

j j

j j j

j j q j q

j j q q j q q j j j q q

N q x x

N x N x N x N q q x

 

   



 



     


 

         

           

 

which means that the left and right hand of this equation are equal, thus 

 ( ) ( ) 0jZ A k    ( ) ( ) 0jA k     so the vector 

, 1 , 2 ,0( ) ( ) ( 1 ) ... ( 1 )
j jj j q j q j jk x N k x N k x N q q k   

              

is a solution of A(σ)β(k)=0. 

 

This Theorem tells us that the problem of finding a system in the form of (1) that has as a 

solution the vector 

, 1 , 2 ,0( ) ( ) ( ( 1)) ... ( ( 1))
j jj j q q j q q j jk x N k x N k x N k q   

              

is equivalent to the problem of finding a system of the form of (3) having as a solution the vector 

,0 ,1 , 1 , 1( ) ( 1) ( 2) ( ) ( )
j jj j j j j j q j q qk x k q q x k q q x k q x k                   . 

However this problem can easily be solved from the results we already have. These facts give 

rise to the following: 

Theorem 27: Let 

1

,

0

( ) ( )
jq q

j j l

w

k x w k 
 





     where each ,j lx  is a vector in r , 1 j w r   . 

Define 

 ,0 ,1 , 1 , , 1 , 1j j j jj j j j q j q j q j q qC x x x x x x      

where 1,2,...,j l  and let  

 1 2

r

lC C C C   , 

1

2

0 0

0 0

0 0 l

J

J
J

J

 

 
 
  
 
 
 

 

with iJ  the Jordan block of order j jq q    with eigenvalue 0 and 
1

l

j

j

 


 . Let 0a   be a 

complex number and define 
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   2

1 1( ) ( ) ( ) ( )
q q

r r q qI C J aI a V a V a V   


           

where q=ind(C,J) is the least integer such that the matrix  

1

1

q

q

C

CJ
S

CJ





 
 
 
 
 
 

 has full column rank and  1 2 qV V V V  is the left inverse of

 

 

1

1

1

r

q

q

r

C

C J aI
S

C J aI







 
 

 
  
 
  

 i.e. 1 q rqVS I  . 

Then ( )j k 
 j=1,,2,…,l are solutions of the equation A(σ)β(k)=0 where 

1
( ) ( )q 


   . 

Furthermore, q is the minimal possible degree of any r r  matrix polynomial with this property.  

 

 

Example 28: Suppose that we want to find out a polynomial matrix A(σ) such that the AR-

representation has the following solution 

 

1,2 1,1 1,0

1

1 1 1

( ) 0 ( ) 1 ( 1) 0 ( 2)

1 1 1

x x x

k k N k N k   

     
     

              
          

 

which means we have 1 3q q  . Assume first that q=1. Then we can construct the matrices  

 1,0 1,1 1,2

1 1 1

0 1 0

1 1 1

C x x x

 
 

  
 
  

 and 

0 1 0

0 0 1

0 0 0

J

 
 

  
 
 

 

The matrix C has det(C)=-2 . So q=ind(C,J)=1 

1

1

1 1
0

2 2

0 1 0

1 1
1

2 2

qV V C

 
 

 
    

 
 
 

. 
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Let a=1. We have 

 
1

3 3 1( ) ( 1)I C J I s V


       

1
1 1

2 1 1 10
1 0 0 1 1 1 1 1 0 2 2

1 1 1 1
0 1 0 0 1 0 0 1 1 ( 1) 0 1 0 1

2 2 2 2
0 0 1 1 1 1 0 0 1 1 1

0 11
2 2

  

  

 


 

                                                 
 

 

with Smith form 
0

( )

3

1 0 0

0 1 0

0 0

S





 
 


 
 
 

 as expected. 

So the matrix we are looking for is 

2 1 1

1 1 1 1 1
( ) ( )

2 2 2 2

0 1 1

  

    




   
 
      
 
  

 

with 

 
0

( ) ( )

2

0 0
1

( ) 0 0

1
0 0

S S 



 






 

 
 
 

   
 
 
 

  

and 

0 1

0 0 0

0 0 0

0 0 0

A CJ AC

 
 

 
 
 
 

 ; 
2

3

C

rank CJ

CJ

 
 


 
 
 

 

 

Example 29: We want to find the polynomial matrix A(σ) with given backward behavior  

 

1,3 1,2 1,1 1,0

1

0 1 1 1
( ) ( ) ( 1) ( 2) 3

1 0 1 0

x x x x

k N k N k N k N k    
       

                  
       

 

which means we have 1 4q q  . We can start by assuming that q=1. Then we define the 

matrices 
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 1,0 1,1 1,2 1,3

1 1 1 0

0 1 0 1
C x x x x

 
   

 
, 

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

J

 
 
 
 
 
 

. 

The matrix 0S C  has not full column rank, so the assumption q=1 is dismissed. Now assume 

that q=2. 

2 1 1

1 1 1 0

0 1 0 1

0 1 1 1

0 0 1 0

C
S S

CJ


 
 

         
 
 

 

this matrix has full column rank because 1det( ) 0S  . Therefore, we have that q=ind(C,J)=2.  

Let also a=1 and define  

   
2 2

2 4 2 1( ) ( 1) ( )C J I V V   


         

where  
 

1

11 2

4

C
V V V

C J I





 
   

  

. 

we have  

1

1

4

1 1 0 0

1 1 1 0 0 1 1 0 1 2 1 1

0 1 0 1 0 0 1 1 0 1 1 2

0 0 0 1

C J I





 
 

                     
 

 

 

 

1

1 2

1 2 0 1

1 3 11 1 1 0 1
2 2 20 1 0 1
1 1 1

1 2 1 1 0
2 2 2

0 1 1 2
1 1 1

1
2 2 2

V V V
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2

2

0 1 1 2

1 1 31 1 0 0 1
2 2 21 0 1 1 1 0 0 1 1 0

( ) ( 1) ( 1)1 1 1
0 1 0 1 0 1 0 0 1 1 0

2 2 2
0 0 0 1

1 1 1
1

2 2 2

  



     
    

       
                                      
                       

2

2 2

2 1

1 1 3 1

2 2 2 2

  

  

  
 
   
 

 

with Smith form  

0

4( )

1 0

0
S

 

 
  
 

 

 The dual matrix that we are looking for is 

2

2

2

2
1

( ) ( ) 1 1 1 3

2 2 2 2

  

 
  

   
    
    
 

 

with  det ( ) 1A    and Smith form at infinity 

2

2 0

( ) ( )

2

0
1

( ) ( ) 1
0

S S 



 






 

 
 
 
 
 

 

and 

2

0 1 2

0 0 0 0

0 0 0 0
A CJ ACJ A C

 
    

 
 ; 

2

3

4

C

CJ
rank

CJ

CJ
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CHAPTER 4 

CONSTRUCTION OF A SYSTEM OF ALGEBRAIC DIFFERENCE EQUATIONS 

WITH GIVEN FORWARD AND BACKWARD SOLUTION SPACE 

In Chapter 3, we studied the construction of a system in the form of an AR-representation 

that satisfied a given forward behavior. A theorem was also provided for the case of backward 

behavior. We shall now combine these two results, in order to create a method for constructing a 

system that satisfies both a forward and a backward behavior of our choice.  

Theorem 30: Let 
1

1 0( ) ... [ ]q q r r

q qA A A A    

      with ( ) ( )Rrank A r    and 0j   

such that det( ( )) 0jA    ( j  is a zero of Α(σ)). If 0( ) k

j j jk C J x   (where 

 ,j j jr n n n

j jC J
 

   is a finite Jordan pair corresponding to the zero j  of ( )A  ) is a 

solution of the AR-representation A(σ)β(k)=0, then  1 1

0( )
k

j j j jk C J J x    is a solution of the 

dual representation ( ) ( ) 0k   . 

Proof: Since 0( ) k

j jk C J x   is a solution of A(σ)β(k)=0, we have that 

0

1

(0)

(1)

( 1)

j

j j

q

j j

C

C J
x

C Jq








  
  
   
  
       

 

Taking Z transform in A(σ)β(k)=0 we have that 

 
1

( ) ( )
j jj n n jA z C zI zI J



    11

0

1

1 2

0 0

0

q j

q q j jq q

r r r

q

q j j

A C

A A C J
z I z I zI x

A A A C J





  
  
  
  
    
  

 

replacing z with 
1

z  
 and multiplying both sides by qz   

 
1

11

0 0

1

1 2

0 0

1 1
( ) ( )

0j j

q j

q q j jq

j n n j r r r

q

q j j

A C

A A C J
z C I I J x I zI z I x

z z

A A A C J
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1 2

1
2 31 1

0 0

1

0
( )

0 0

j

q j

j jq q

j n j r r r

q

q j j

A A A C

A A C J
z C I zJ x z I z I I x

A C J


 



  
  
      
  
    
  

 

The matrix jJ  is invertible so therefore 

    

1 2

1
2 31 1 1

0 0

1

0
( )

0 0

j

q j

j jq q

j j n j r r r

q

q j j

A A A C

A A C J
z C J zI J x z I z I I x

A C J


  



  
  
      
  
    
  

 

   

1 2

2
1

2 31 1 1 1 1

0 0

0
( )

0 0

j

q j j

j jq q

j j n j r r r j

q

q j j

A A A C J

A A C J
z C J zI J x z I z I I J x

A C J


    

  
  
      
  
    
  

 

Since the pair  ,j jC J  is a finite Jordan pair of Α(σ) we have that  

0 1 0q

j j j q j jA C AC J A C J    , So 

    

0

1
1

1 01 1 1 1

0 0

1

1 2 0

0 0

0
( )

j j

j

j jZ q q

j j n n j r r r j

q

q q j j

A C

A A C J
z C J zI zI J x z I z I zI J x

A A A C J




   

 

 

  
  

    
  
      

 

    

1
0

2
1

1 01 1 1

0 0

1 2 0

0 0

0
( )

j j

j j

j jq q

j j n n j r r r

q
q q j j

A C J

A A C J
z C J zI zI J x z I z I zI x

A A A C J






  


 

  
  
     
  
    

  

 

Therefore we have concluded that  

       
1

1 1 1 1 1 1

0 0( ) ( )
j j

k

j j n n j j j jk z C J zI zI J x C J J x 


            

is a solution of the dual AR-representation ( ) ( ) 0k    for initial conditions 
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1

2

0

(0)

(1)

( 1)

j j

j j

q

j j

C J

C J
x

C Jq













  
  
   
  
        

 

 

Since the matrix 
1

jJ 
 is not in Jordan form, we can find a nonsingular constant matrix 

j jn n
U


  such that 

1 1

j jJ UJ U   where jJ  is in Jordan form. With this change, the solution of 

( ) ( ) 0k    can also be written as follows: 

       1 1 1 1 1

0 0 0( )
k kk

j j j j j j j jk C J J x C UJ U U J U x C J U x         

where 
j j jC C UJ  and we used the fact that  

   1 1 1 1 1 1

n nj j

k k

j j j j j j

I I

UJ U UJ U U J U U J U UJ U U J U          

So we can see that instead of using the matrix pair  1 1,j j jr n n n

j j jC J J
     where the matrix 

1

jJ 
 is not in Jordan form, we can use the matrix pair 

 1 1,j j jr n n n

j j j j jC C UJ J U J U
       

where jJ  is in Jordan form. 

Summarizing these results, in order to construct an AR-representation for a certain forward and 

backward behavior, one must follow the next algorithm. 

Algorithm 31: Construction of an AR-representation with given forward & backward behavior. 

(except from polynomial behavior). 

Step 1: Transform the finite Jordan pairs  ,j j jr n n n

j jC J
 

   that correspond to 

solutions of the form 0( ) k

j jk C J x   to the finite Jordan pairs 

 1 1,j j jr n n n

j j j j jC C UJ J U J U
       that correspond to the solutions of the form 

   1

0( )
k

j jk C J U x   of the dual system that we are looking for.  
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Step 2: Create the infinite Jordan pairs that correspond to solutions of the form (6). These 

are also the finite Jordan pairs for the f.e.d. at zero of the dual system. 

Step 3: Construct the polynomial matrix ( ) , using the method presented in Chapter 2 

Step 4: Get the polynomial matrix 
1

( ) ( )q 


    that we are looking for and thus the 

AR-representation is A(σ)β(k)=0.                  

Algorithm 31 can be implemented in Mathematica.  
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Example 32: We want to find an AR-representation Α(σ)β(k)=0 with the following forward and 

backward behavior 

Algorithm 31 
c1=Input["input matrix C, corresponding to the Finite Jordan Pair"] 

j1=Input["input matrix J, corresponding to the Finite Jordan Pair"] 

{u,jnew}=JordanDecomposition[Inverse[j1]]; 

cnew=c1.u.jnew; 

cinf=Input["Input matrix C.inf, corresponding to the Infinite Jordan 

Pair"]; 

jinf=Input["Input matrix J.inf, corresponding to the Infinite Jordan 

Pair"]; 

Cpair=ArrayFlatten[{{cnew,cinf}}]; 

{rowsj1,columnsj1}=Dimensions[j1]; 

{rowsjinf,columnsjinf}=Dimensions[jinf]; 

Jpair=ArrayFlatten[{{jnew,ConstantArray[0,{rowsj1,columnsjinf}]},{Cons

tantArray[0,{rowsjinf,columnsj1}],jinf}}]; 

q=1; 

{rowsC,columnsC}=Dimensions[Cpair]; 

S=Cpair; 

While[MatrixRank[S]<columnsC, 

 q=q+1; 

 S=ArrayFlatten[{{S},{Cpair.MatrixPower[Jpair,q-1]}}]] 

a=Input["Choose a value a, other than the f.e.d.'s of the desired 

system"]; 

M=Cpair; 

For[i=1,i<q,i=i+1, 

 M=ArrayFlatten[{{M},{Cpair.MatrixPower[Jpair-a 

IdentityMatrix[Dimensions[Jpair]],-i]}}]] 

M=PseudoInverse[M]; 

{rowsM,columnsM}=Dimensions[M]; 

step=columnsM/q; 

indicator=1 

For[i=1, i<=q, i=i+1, 

 v[i]=Take[M,{1,rowsM},{indicator,indicator+step-

1}];indicator=indicator+step] 

sum=(s-a)
q
 v[1] 

For[i=1,i<q,i++,sum=sum+(s-a)
q-i
 v[i+1]] 

sum=sum//Simplify; 

A=IdentityMatrix[rowsC]-Cpair.MatrixPower[Jpair-a 

IdentityMatrix[Dimensions[Jpair]],-q].sum//Simplify; 

A=A/.s1/s; 

A=A sq 
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1,1 1,0 1,1 1,0

1

1

'

1 1 1 2
( ) 2 2 2 2

1 0 1 0

k k k kk k k

   

        
          

        
 and 

1,2 1,1 1,0

2

1 1 0
( ) ( ) ( 1) ( 2)

1 1 3

x x x

k k N k N k   
      

             
     

 

We first define the matrix pair 

 1 1,0 1,1

2 1

0 1
C  

 
   

 
 and 1

2 1

0 2
J

 
  
 

 

1

1

1

1

1 1 1
1

1 0 1 02 4 2

1 0 4 1 0 4
0 0

2 2U U

J

J





   
      

       
      

   
   

 

1 1 1

1
1

2 1 1 0 1 02

0 1 0 4 1 0 2
0

2

C C UJ

 
     

       
      

 
 

 

 2 1,0 1,1

0 1 1

3 1 1
C x x

  
   

 
, 2

0 1 0

0 0 1

0 0 0

J

 
 

  
 
 

 

The whole matrix pair is 

 1 2

1 0 0 1 1

0 2 3 1 1
C C C

  
   

 
 

1

2

1
1 0 0 0

2

1
0 0 0 00

2
0 0 0 0 1 0

0 0 0 0 1

0 0 0 0 0

J
J

J

 
 
 
 

        
 
 
 
 

 

Now we start assuming different values for q. First assume that q=1, 

in this case we have that the matrix  
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  1 2

1 0 0 1 1

0 2 3 1 1
C C C

  
   

 
 does not have full column rank, so 1q   

Now assume that q=2 

 

2

1 0 0 1 1

0 2 3 1 1

= 1
1 0 0 1

2

0 1 0 3 1

C
S

CJ

  
 

  
   

   
  
 

 

Because this matrix does not have full column rank, 2q  . 

Now assume that q=3. 

3

2

1 0 0 1 1

0 2 3 1 1

1
1 0 0 1

2
= 0 1 0 3 1

1
1 0 0 0

4

1
0 0 0 3

2

C

S CJ

CJ

  
 

 
 

  
  

   
   
   

 
 
 
 

 

The matrix 3S  has full column rank, so q=3. 

Let a=1. We have 

   
3 2 3

2 4 3 2 1( ) ( 1) ( 1) ( 1)I C J I s V s V s V


          

where    

 

1

1

1 2 3 8

2

8

C

V V V C J I

C J I
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So we have 

   
3 2 3

2 4 3 2 1( ) ( 1) ( 1) ( 1)I C J I s V s V s V


           

 

   

22 3

2 3 2

2 2636 9801 716515816 69350 85715 20558

11623 11623

3 456 77 2961 2582 456 227 10940

11623 11623

s s ss s s

s s s s s s

    
 
 
     
  
 

 

Therefore, the polynomial matrix we are looking for is (we multiply by 11623 to get a simpler 

result) 

3 1
( ) 11623 ( )A  


  

 

 

   

3 2 2

3 2 2

15816 69350 85715 20558 2 2636 9801 7165

3 456 77 2961 2582 456 227 10940

s s s s

s s s s s

     
 
     
 

 

and by multiplying by 11623 we get 

And as a matter of fact, this matrix A(σ) has the pairs  1 1C J  and  2 2C J  as Jordan pairs, 

which is easily checked in Mathematica. 

The whole string of commands In Mathematica is 



Modeling Of Discrete-Time AR-Representations 

 

58 
 

 

c={{1,0,0,-1,-1},{0,2,3,1,-1}} 

j={{1/2,1,0,0,0},{0,1/2,0,0,0},{0,0,0,1,0},{0,0,0,0,1},{0,0,0,0,0}} 

b=1 

ArrayFlatten[{{c},{c.j}}] 

MatrixRank[ArrayFlatten[{{c},{c.j}}]] 

(rank equals 3 so we move setting q=3) 

MatrixRank[ArrayFlatten[{{c},{c.j},{c.MatrixPower[j,2]}}]] 

(result equals 4, so q=3) 

m=ArrayFlatten[{{c},{c.MatrixPower[j-b IdentityMatrix[5],-

1]},{c.MatrixPower[j-b IdentityMatrix[4],-2]}}] 

m1=PseudoInverse[m] 

v1=Take[m1,{1,4},{1,2}] 

v2=Take[m1,{1,4},{3,4}] 

v3=Take[m1,{1,4},{5,6}] 

a=IdentityMatrix[2]-c.MatrixPower[j-b IdentityMatrix[5],-3].((s-

b)v3+(s-b)^2 v2+(s-b)^3 v1)//Simplify 

ad=a/.{s->1/s} 

adual=s^3 abar//Simplify 

a0=adual/.s->0 

a1=(adual-a0)*(1/s)//Expand 

a1=%/.s->0 

a2={{-69350/11623,2 2636/11623},{3 (-77)/11623,456/11623}} 

a3={{15816/11623,0},{3 (456/11623),0}} 

c1={{1,0},{0,2}} 

j1={{1/2,1},{0,1/2}} 

a3.c1.MatrixPower[j1,3]+a2.c1.MatrixPower[j1,2]+a1.c1.MatrixPower[j1,1]

+a0.c1 

Output: {{0,0},{0,0}} 

(First Jordan Chain Checked) 

c2={{0,-1,-1},{3,1,-1}} 

j2={{0,1,0},{0,0,1},{0,0,0}} 

a0.c2.MatrixPower[j2,3]+a1.c2.MatrixPower[j2,2]+a2.c2.MatrixPower[j2,1]

+a3.c2 

{{0,0,0},{0,0,0}}  

(Second Jordan Chain Checked) 
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We have constructed an algorithm of finding the polynomial matrix A(σ) corresponding  

to certain behavior. As we have already mentioned, A(σ) is not the only polynomial matrix 

satisfying the given behavior. Any other unimodular equivalent matrix ˆ ( )s  such that 

ˆ ( ) ( ) ( )s U      with detU c   gives a solution to our problem. More specifically, all the 

divisor equivalent polynomial matrices are solutions to our problem. 

Definition 33 [Karampetakis et al 2004]: 1 2( ), ( ) [ ]r mA A     are said to be divisor 

equivalent if there exist polynomial matrices ( ), ( )M s N s such that: 

  1

2

( )
( ) ( ) 0

( )

A s
M s A s

N s

 
 

 
 

and the compound matrices  2( ) ( )M s A s  and 
1( )

( )

A s

N s

 
 
 

 satisfy: 

(i) have full rank over  s  and no f.e.ds. 

(ii) have no i.e.ds.  

 

Divisor Equivalence is very important for us, since it has the property of preserving both the 

finite and the infinite elementary divisors of a polynomial matrix. 

In Theorem 28 and Algorithm 29 we used the transformation 
1

z
z

 . As a result, the 

algorithm works well only in the case where there are no polynomial functions in the behavior 

space and the matrix J is invertible. For example, if the matrix J corresponds to a f.e.d. at zero, its 

diagonal elements would be zero, thus J won’t be invertible. We can overcome this problem by 

using the transformation 
1

z b
z

   and thus moving all possible zeros of A(σ) to non-zero 

places. We do this by following these remarks 

 If  1 1,C J  is a finite Jordan pair of A(σ), then  1 1, nC J bI  is a finite Jordan pair of  

A(σ-β). 
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 If  2 2,C J  is an infinite Jordan pair of A(σ), then   1

2 2 2, nC J I bJ


  is an infinite 

Jordan pair of A(σ-b). 

 

Example 34: We want to find an AR-representation Α(σ)β(k)=0 with the following forward and 

backward behavior 

1,1 1,0

1

1 1
( ) ( ) ( 1)

1 0
k k k

 

  
   

     
   

 and 

1,1 1,0

2

1 1
( ) ( ) ( 1)

1 1

x x

k k N k  
    

        
   

 

We define the matrix pair  1 1,0 1,1

1 1

0 1
C  

 
   

 
 and 

*

1

0 1

0 0
J

 
  
 

 

but we are not going to use this Jordan pair. Instead we will create the new pair  

 1 1,0 1,1

1 1

0 1
C  

 
   

 
 and 

*

1 1 2

2 1
2

0 2
J J I

 
    

 
 

that will give us the dual polynomial matrix of A(σ-1). Let also 

1

1

1

1

1 1 1
1

1 0 1 02 4 2

1 0 4 1 0 4
0 0

2 2U U

J

J





   
      

       
      

   
   

 

1 1 1

1
11

1 1 1 0 12
2

0 1 0 4 1
0 20

2

C C UJ

 
                  

   
 

 

The infinite Jordan pair is 

2

1 1
C

1 1

  
  

 
; 2

0 1
J

0 0

 
  
 

 

but instead we are using the pair   1

2 2 2 2C J I J


  

 
1

2 2 2

0 1
2

0 0
J I J

  
   

 
 

Let  
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 1 2

1
1 1 1

2

0 2 1 1

C C

 
   

 
 

 

1

2

1
1 0 0

2

10
0 0 0

20
0 0 0 1

0 0 0 0

J
J

J

 
 
 

   
    
   

 
 
 

 

Now we start assuming values for q. For q=1 the matrix C obviously does not have full column 

rank.  

For q=2 

 

2

1
1 1 1

2

0 2 1 1
=

1
0 0 1

4

0 1 0 1

C
S

CJ

 
   

 
   

    
   

 
 
 

 

with  2

1
det 0

4
S   , and so q=2 is accepted. 

Let a=2. We have 

 

   
2 2

2 4 2 1( ) 2 ( 2) ( 2)B I C J I V V  


       

where  
1

1 2 1

20 6 33 5

9 3
3 0

2 2
( 2 )

10 1 15 1

4 2 6 2

C
V V

C J I





    
 
  

    
     

      

 

 

Therefore      
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2 2

2 2

2 4 2 1

2 2

1 1
2 11 14 2 7 3

36 36
( ) 2 ( 2) ( 2)

1 1
2 5 2 2 3

12 12

B I C J I V V

   

  

   



 
    

        
       
 

 

The dual polynomial matrix  A(σ-2) is  

   

   

2 2

2

2 2

1 1
2 11 14 2 7 3

1 36 36
A( 2) ( )

1 1
2 5 2 2 3

12 12

B

   

 


   

 
    

    
       
 

 

So 

2 2

2 2

1 1
(2 3 ) (2 3)

36 36
( )

1 1
(2 3 ) (2 7 3)

12 12

A

   



   

 
   

  
      
 

 

with Smith form 

 

A( ) 2

1 0
( )

0
S  



 
  
 

 

 

and Smith form at infinity 

2

2 0 2

( ) 2( )

1 0 01
( ) ( )

0 0 1
S S 


  





 

  
     

   
 

Both Smith forms are exactly what we expected and confirm the correctness of our algorithm. 

Again we check the initial Jordan pairs: 

* * 2

0 1 1 1 1 2 1 1

0 0

0 0
A C AC J A C J

 
    

 
 ; 

1

*

1 1

* 2

1 1

2

C

rank C J

C J

 
 


 
 
 

 

2

2 2 1 2 2 0 2 2

0 0

0 0
A C AC J A C J

 
    

 
 ; 

2

2 2

2

2 2

2

C

rank C J

C J
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CHAPTER 5 

Construction Of A System Of Algebraic Difference Equations With Given 

Forward & Backward Behavior Via The Decomposable Pairs Method. 

In this chapter we will present an alternative method of constructing a system of 

difference equations first presented by Gohberg. This method uses the theory of decomposable 

pairs of a matrix A(σ). 

Definition 35 [Gohberg et al 1982]: A matrix pair ( , )X T  is called decomposable of order p if 

r pX   and p pT  . An admissible pair ( , )X T  of order rq is called a decomposable pair of 

degree q if the following conditions are satisfied: 

i)  1 2X X X  ; 
1

2

0

0

T
T

T

 
  
 

 

where 1 1,r n n nX T    for some 0 n rq  , so that 
( ) ( ) ( )

2 2;r rq n rq n rq nX T      . 

ii) The matrix 

1

1 2 2

2

1 1 2 2

1

1

1 1 2

q

q

q

q

X X T

X T X T
S

X T X









 
 
 
 
  
 

 

is nonsingular. 

 A decomposable pair ( , )X T  will be called a decomposable pair of the regular 

polynomial matrix A(σ) defined in (1) if in addition to (i) and (ii) the following condition holds  

iii)  1 10
0

q i

ii
A X T


  ; 2 20

0
q q i

ii
A X T 


 . 

 

A decomposable pair appears to include the full spectral information of a polynomial matrix. 

That is both the finite and infinite structure.  
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 The existence of a decomposable pair for every nonregular polynomial matrix follows 

from the following theorem. 

Theorem 36 [Gohberg et al 1982]: Let A(σ) defined in (1) and  C J  and  C J   be its 

finite and infinite Jordan Pairs. Then 

 X C C  ; 
0

0

J
T

J

 
  
 

 

is a decomposable pair of A(σ). 

 

A very important result is that we can always construct a regular polynomial matrix A(σ) 

corresponding to a given decomposable pair ( , )X T . The way is given in the following theorem 

Theorem 37 [Gohberg et al 1982]: Let ( , )X T  be the decomposable pair of degree q given in 

definition 35 and let 1qS   be the matrix defined in the same def. Then for every r x rq matrix V 

such that the matrix 
2qS

V

 
 
 

 has full column rank, the polynomial matrix 

   1 1

0 1 1

2

0
( ) ...

0

q

q

I
A V I P U U U

T I


  






 
     

 
 

has ( , )X T  as its decomposable pair, where 

1

1 2

2

0

0 0
q q

I I
P S S

T



 

   
    

    

with

 

2

1 2 2

3

1 1 2 2

2

2

1 1 2

q

q

q

q

X X T

X T X T
S

X T X
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and

 

  1

0 1 1 1q qU U U S 

 
 

 

Therefore, given a decomposable pair ( , )X T  of degree q, we can always create a 

polynomial matrix A(σ) of degree q. Using the above theorem we construct the following 

algorithm. 

Algorithm 38: Construction of a system of algebraic difference equations with given forward & 

backward behavior. 

Suppose that we are given the vector space  

1

, , , 1 ,0( ) : ...D i k i k i k q i

F j q i j q i j q i j

k
B k x k x x

q
    



 
      

 
 

i k ;  j=z,z+1,…,r; , 10,1,..., i jq    and the vector space 

, , , 1 ,0( ) : ( ) ( ( 1)) ... ( ( ))D B

B j i j i j i jB k x N k x N k x N k i              

i=0,1,…, 1jq q  ; j , 

Step 1: Construct the finite Jordan pairs  ,j j jr n n n

j jC J
 

   corresponding to the forward 

behavior of the system and let  

 1 2: r n

kC C C C    

 1 2: n n

kJ blockdiag J J J    

Step 2: Construct the infinite Jordan pairs  ( ) ( ) ( )
( ) ( )j j jr q q q q q qD D

k kC k J k
    

   

corresponding  to the backward behavior and let 

1( ) : ( ) ( ) ( )D D D D r

k k rC k C k C k C k 

 
     

1( ) : ( ) ( ) ( )D D D D

k k rJ k blockdiag J k J k J k  
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Step 3: Find the least q such that  

1

2

1

1

q

q

q

q

C C J

CJ C J
S

CJ C



 



 







 
 
 
 
  
 

 

has full column rank. 

Step 4: Find V such that 
2qS

V

 
 
 

 has full column rank 

Step 5: Find 

1

1 2

2

0

0 0
q q

I I
P S S

T



 

   
    

  
 

  1

0 1 1 1q qU U U S 

   

Step 6: Define the polynomial matrix A(σ) as 

   1 1

0 1 1

2

0
( ) ...

0

q

q

I
A V I P U U U

T I


  






 
     

 
 

The vector space 
D

FB  and 
D

BB  belong to the solution space of the system A(σ)β(k)=0. It must be 

noted though that in general, they do not span the whole behavior space of A(σ)β(k)=0.          

Example 39: We want to find an AR-representation Α(σ)β(k)=0 with the following forward and 

backward behavior 

1,1 1,0 1,1 1,0

1

1

'

1 1 1 2
( ) 2 2 2 2

1 0 1 0

k k k kk k k

   

        
          

        
 and 

 

1,2 1,1 1,0

2

1 1 2
( ) ( ) ( ) ( 1) ( 2)

1 1 0

x x x

k k k N k N k    
      

              
     

 

Step 1: Create the Finite Jordan Pair 
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 1 1,0 1,1

2 1

0 1
C  

 
   

 
 and 1

2 1

0 2
J

 
  
 

 

Step 2: Now create the Infinite Jordan Pair  

 2 1,0 1,1 1,2

2 1 1

0 1 1
C x x x

  
   

 
, 2

0 1 0

0 0 1

0 0 0

J

 
 

  
 
 

 

Step 3: Now let us find the desired q! We begin by setting q=1 

The matrix  0 1 2

2 1 2 1 1

0 1 0 1 1
S C C

  
   

  
 

does not  have full column rank 

For q=2 the matrix 1 2 2

1

1 1 2

2 1 0 2 1

0 1 0 0 1

4 4 2 1 1

0 2 0 1 1

C C J
S

C J C

 
 

         
 

  

  

 

does not have full column rank. 

For q=3 the matrix 

2

1 2 2

2 1 1 2 2

2

1 1 2

2 1 0 0 2

0 1 0 0 0

4 4 0 2 1

0 2 0 0 1

8 12 2 1 1

0 4 0 1 1

C C J

S C J C J

C J C

 
 

  
  

       
    

    

 

has Rank=5. Thus q=3 is our choice. 

Step 4: We must find matrix V such that 
1S

V

 
 
 

 has full column rank! 

For V=
1 0 1 0 1

0 1 0 1 0
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we have that 
1

2 1 0 2 1

0 1 0 0 1

4 4 2 1 1

0 2 0 1 1

1 0 1 0 1

0 1 0 1 0

S

V

 
 

 
   

   
    

 
  
 

 

has full column rank! 

Step 5: 2 41

2 1

2 2

24 6 6 45
1

17 17 17 17

1 4 4 13
0

17 17 17 17
0

24 23 6 96
00 0

17 17 17 17

20 5 12 46
0

17 17 17 17

0 0 0 0 0

I I
P S S

J



 
 

 
  
 

     
             

 
  
 
 
 

 

Step 6:    2 1 2

5 0 1 2

2 3

0
( )

0

I J
A V I P U U U

J I


  



 
     

 
  

 

   

2

2 2 3

10 2
( 2) 48 49 10

17 17

1 1
716 628 135 3192 2846 1121 270

578 578

s s s

s s s s s

 
    

 
      
 

 

Taking the determinant of A(σ) we can check that 

Det(A(σ))=    
218

2 15 2
289

s s   

So the system A(σ) does actually have a finite elementary divisors at s=2 of order 2 as we 

wanted! (it also has more zeros, so our given behavior does not span the whole solution space)  

Now we want to check if it also has an infinite elementary divisor at infinity of order 3! To check 

this we will take a look at the dual matrix of A(σ). 
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( )A    

 

   

2 2 3 2

3 2 3 2

10 2
( 2 ) 48 49 10

17 17

1 1
716 628 135 3192 2846 1121 270

578 578

s s s s s

s s s s s s

 
    

 
      
 

 

with Det=    
2318

15 2 2 1
289

s s s     

So the dual matrix has a Smith form at zero of order 3 

0

3( )

1 0
( )

0A
S






 
  
 

 

and the matrix A(σ) has a Smith form at infinity   

3 3

3 0

( ) ( ) 0

0 01
( ) ( )

0 0 1
A A

S S 

 
 

 


   

     
   

 

This agrees with our theoretical results because we know from theorem 23 that the vector ( )j k 
 

is the sum of jq+q  vectors. In this example, we have that q=3 and 3jq+q . This means that 

0jq . This result agrees with the Smith form of A(σ) at infinity and the Smith form of the dual 

matrix at zero. 

Finally, we check the properties regarding the Jordan Pairs  1 1C J  and  2 2C J  

2 3

0 1 1 1 1 2 1 1 3 1 1

0 0

0 0
A C AC J A C J A C J

 
     

 
 ; 

1

1 1

2
C

rank
C J

 
 

 
 

2 3

3 2 2 2 2 1 2 2 0 2 2

0 0 0

0 0 0
A C A C J AC J A C J

 
     

 
 ; 

2

2 2

2

2 2

3

C

rank C J

C J
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Example 40: We want to find an AR-representation Α(σ)β(k)=0 with the following forward and 

backward behavior 

1,1 1,0

1

1 1
( )

0 1
k k

 


   

    
   

 and 

1,1 1,0

2

1 1
( ) ( ) ( 1)

1 1

x x

k k N k  
    

        
   

 

Step 1: We define the finite Jordan pair pair  

 1 1,0 1,1

1 1

1 0
C  

 
   

 
 and 1

1 1

0 1
J

 
  
 

 

Step 2: The infinite Jordan pair is  

2 2

1 1 0 1
C ;J

1 1 0 0

    
    

   
 

Step 3: Now let us find the desired q! We begin by setting q=1 

The matrix  0 1 2S C C  is neither invertible, nor has full column rank.  

For q=2 the matrix 1 2 2

1

1 1 2

1 1 0 1

1 0 0 1

1 2 1 1

1 1 1 1

C C J
S

C J C

 
 
         
 
   

 

has full column rank. 

Step 4: We must find matrix V such that 
0S

V

 
 
 

 has full column rank! 

For V= 
1 0 0 1

0 1 1 0

 
 
 

 

1

1 1 1 1

1 0 1 1

1 0 0 1

0 1 1 0

S

V

  
 
        
 
 

 

This matrix has full column rank. 
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Step 5: 2 21

1 0

2 2

1
1 1 0

2

0 0 1 0 2

0 0 1
0 0 1

2

0 0 0 0

I I
P S S

J



 
 

 
     

      
     

 
 
 

 

Step 6:    2 1

4 0 1

2 2

0
( )

0

I J
A V I P U U

J I


 



 
    

 
 

   

   

2 2

2 2

1 1
4 3 2

2 2

1 1
6 5 4 3

2 2

s s s s

s s s s

 
      

 
       
 

 

Taking the Determinant of Α(σ) we can easily check that 

  2( ) ( 1)Det A s s   

So the system A(σ) does actually have a finite elementary divisor at σ=1 of order 2! 

For the infinite elementary divisor we need to take a look at the dual matrix  

( )A    

   

   

2 2

2 2

1 1
4 3 1 2 1

2 2

1 1
6 5 1 4 3 1

2 2

s s s s

s s s s

 
      

 
       
 

 

with a determinant of 

2 2( 1)Det s s   

So the dual matrix has a Smith form at zero 

0

2( )

1 0
( )

0A
S
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and matrix A(σ) has a Smith form at infinity  

2

2 0

( ) ( )

01
( ) ( )

0 1
A A

S S 


 




 

   
 

 

Finally, we check the properties regarding the Jordan Pairs  1 1C J  and  2 2C J  

2

0 1 1 1 1 2 1 1

0 0

0 0
A C AC J A C J

 
    

 
 ; 

1

1 1

2
C

rank
C J

 
 

 
 

2

3 2 2 2 2 1 2 2

0 0

0 0
A C A C J AC J

 
    

 
 ; 

2

2 2

2
C

rank
C J

 
 

 
 

 

Example 41: We want to find an AR-representation Α(σ)β(k)=0 with the following forward and 

backward behavior 

1,1 1,1 1,0

1,0

1

1

'

1 1 1 2

( ) 1 2 0 2 1 2 0 2

0 1 0 1

2

k k k kk k k

  



 

 
      
      

           
             

 

 

1,2 1,1 1,0

2

1 1 0

( ) 1 ( ) 0 ( 1) 2 ( 2)

0 1 1

x x x

k k N k N k   

     
     

              
           

 

Step 1: Create the finite Jordan Pair 

 1 1,0 1,1

2 1

0 1

1 0

C  

 
 

  
 
  

; 1

2 1

0 2
J

 
  
 

 

Step 2: Create the infinite Jordan pair 
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 1,0 1,1

0 1 1

2 0 1

1 1 0

C x x

 
 

  
 
   

; 

0 1 0

0 0 1

0 0 0

J

 
 

  
 
 

 

Step 3: We will now start assuming values for q. For q=1 the matrix 

 0 1

2 1 0 1 1

0 1 2 0 1

1 0 1 1 0

S C C

 
 

   
 
    

 does not have full column rank. 

 

For q=2 the matrix 1

1

1 1

2 1 0 0 1

0 1 0 0 2

1 0 0 0 2

4 4 0 1 1

0 2 2 0 1

2 1 1 1 0

C C J
S

C J C

 



 
 

 
   

    
   

  
      

 

has rank=5, thus it has full column rank, so q=2 is the accepted value.  

Step 4: We must find a matrix V, such that the matrix 
0S

V

 
 
 

 has full column rank. 

For 

1 0 0 1 1

0 1 1 1 0

1 0 1 0 1

V

 
 


 
 
 

 

we have that  
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0

2 1 0 1 1

0 1 2 0 1

1 0 1 1 0

1 0 0 1 1

0 1 1 1 0

1 0 1 0 1

S

V

 
 

  
    

   
   

 
  
 

 

has full column rank. 

Step 5: 32 1

1 0

3

17 40 63 33 72

23 23 23 23 23

44 67 90 57 93

23 23 23 23 23
0

24 24 24 29 34
00

23 23 23 23 23

24 24 24 29 34

23 23 23 23 23

0 0 0 0 0

II
P S S

J





    
 
 

 
 

    
      
     

 
 
 
 
 

 

Step 6:    2 1

5 0 1

3

0
( )

0

I J
A V I P U U

J I


 

 

 
    

 
 

   

     

     

2 2 2

2 2 2

2 2 2

56 1643 56 1
3 5 2 946 305 112

529 529 529 529

1 2 1
9 48 28 105 40 7 132 35 28

23 23 23

1 1 2
237 732 112 2037 506 56 1137 394 56

529 529 529

s s s s s s

s s s s s s

s s s s s s

 
       

 
          
 
 
       
 

 

with a determinant of  

  233
( ) ( 2) (9 14 )

529
Det A s s s    

Now we will check if the dual matrix has a finite elementary divisor at zero of order 3. 

( )A    
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2 2 2

2 2 2

2 2 2

56 1643 56 1
3 5 2 946 305 112

529 529 529 529

1 2 1
9 48 28 105 40 7 132 35 28

23 23 23

1 1 2
237 732 112 2037 506 56 1137 394 56

529 529 529

s s s s s s

s s s s s s

s s s s s s

 
       

 
          
 
 
       
 

 

with a determinant of 

3 233
( ) (2 1) (9 14)

529
Det A s s s s       

so the Smith form at zero of the dual matrix is 

0

( )

3

1 0 0

( ) 0 1 0

0 0

A
S






 
 

  
 
 

 

which means that the Smith for at infinity of A(σ) is 

2

2 0 2

( ) ( )

0 0
1

( ) ( ) 0 0

1
0 0

A A
S S 



  






 
 
 

   
 
 
 

 

so the system Α(σ) actually has a zero at infinity of order 1, which agrees with our theoretical 

results because we know from theorem 23 that the vector ( )j k 
 is the sum of jq+q  vectors. In 

this example, we have that q=2 and 3jq+q . This means that 1jq . This result agrees with the 

Smith form of A(σ) at infinity and the Smith form of the dual matrix at zero.  

We can also check in Mathematica that the matrix pairs  1 1C J  and  C J   are indeed the 

finite and infinite Jordan pairs of the matrix we found, because they satisfy  

12

2 1 1 1 1 1 0 1

1 1

0 0

0 0 ; 2

0 0

C
A C J AC J A C rank

C J
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2

0 1 2

2

0 0 0

0 0 0 ; 3

0 0 0

C

A C J AC J A C rank C J

C J



      

 

   
   

   
   
   
   

 

Second approach: 

In the first method, we started by knowing from the form of 
2( )k  that 

1 3q q  . We first 

assumed that q=1, hence 
1 2q  , but the matrix 

0S  did not have full column rank, so we 

continiued assuming that q=2 (so 
1 1q  ). For this case the algorithm worked fine and we got the 

desired result. The Smith form of the dual system at zero was 

1

0

( )

3

0 0 1 0 0

( ) 0 0 0 1 0

0 0 0 0

q q

q q

A

q q

S




 

 







   
   

    
  
  

 

Although this method for q=2 worked fine and is absolutely theoretically correct, the truth is that 

we can examine other possible cases. 

What we could assume, is that there is also another i.e.d. at infinity, which means another f.e.d. 

of the dual system at zero, of order 1' 2q q  . The possible values for 'q  are ' 1q   ' 2q   or 

' 1q    (in case we have a pole at infinity). This means that the Smith form of the dual system at 

zero could be 

1

0 ' 2

( )

3

0 0 1 0 0

( ) 0 0 0 0

0 0 0 0

q q

q q

A

q q

S




  

 







   
   

    
  
  

 

or 

1

0 ' 3

( )

3

0 0 1 0 0

( ) 0 0 0 0

0 0 0 0

q q

q q

A

q q

S




  

 







   
   

    
  
  

 

or 

1

0 '

( )

3

0 0 1 0 0

( ) 0 0 0 0

0 0 0 0

q q

q q

A

q q

S
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We will study the first case, where there is an extra i.e.d. of order 1.  

To this i.e.d we correspond an infinite Jordan Pair (q+q’=2) 

3C

 

 

 

 
 

  
 
 

 ; 
3

0 1

0 0
J

 
  
 

 

The combined Infinite Spectral Pair will be 

 2 3

0 1 1

2 0 1

1 1 0

C C C

 

 

 



 
 

  
 
   

 ; 

0 1 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0

J

 
 
 
 
 
 
 
 

 

We will now continue with the algorithm 

Step 3: For q=2, we must find α,β,γ,δ,ε,ζ such that the matrix 

1

1

1 1

C C J
S

C J C

 



 
  
 

 

has full column rank. But this matrix is 6-by-7, so it cannot have full column rank. This means 

that we cannot solve this problem for q=2, so the case for q=3 has to be examined. But since we 

have already proved that this problem has a solution for q=2, by solving the problem for the case 

of q=3, we lose one of the most important aims we had, which is finding a system of the smallest 

possible degree q, satisfying a given behavior. The same thing goes for ' 2q  . 

So the two cases of adding a zero at infinity of our choise are discarded, because they will lead to 

a system of higher degree. 

Let’s now consider the case where there is an extra pole at infinity. in this case, To this i.e.d. we 

correspond an infinite Jordan Pair 

3C







 
 

  
 
 

 ; 3 0J   

The combined Infinite Spectral Pair will be 
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 2 3

0 1 1

2 0 1

1 1 0

C C C









 
 

  
 
   

 ; 

0 0 0 0

0 0 1 0

0 0 0 1

0 0 0 0

J

 
 
 
 
 
 

 

We will now continue with the algorithm 

Step 3: The case of q=1 needs not to be examined, we can be sure that  
0S  will not have full 

column rank. For q=2, we must find α,β,γ such that the matrix 

1

1

1 1

2 1 0 0 1 1

0 1 0 0 0 1

1 0 0 0 1 0

4 4 0 1 1

0 2 2 0 1

2 1 1 1 0

C C J
S

C J C 





 



 
 

  
   

    
   

  
      

 

has  full column rank. For α=β=1 and γ=0 this criterion is satisfied. So q=2. 

Step 4: We must find a matrix V, such that the matrix 
0S

V

 
 
 

 has full column rank. 

For 

1 0 0 1 1 0

0 1 1 1 0 1

1 0 1 0 1 0

V

 
 


 
 
 

 

the matrix 

0

2 1 0 1 1 1

0 1 2 0 1 1

1 0 1 1 0 0

1 0 0 1 1 0

0 1 1 1 0 1

1 0 1 0 1 0

S

V

 
 

  
    

   
   

 
  
 

 

has full column rank. 
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Step 5:  32 1

1 0

3

5 8 21 6 6 6

13 13 13 13 13 13

4 17 30 3 3 3

13 13 13 13 13 13

0 0 0 0 0 0 0

00 8 8 8 7 6 6

13 13 13 13 13 13

4 4 4 3 10 10

13 13 13 13 13 13

0 0 0 0 0 0

II
P S S

J





  
 
 

   
 
 

             
 
 
   

 
  
 

 

Step 6:    
2 1 2,4

6 0 1

4,2 4

0
( )

0

I J
A V I P U U

J I


 

 

 
    

 
 

     

     

     

2 2 2

2 2 2

2 2 2

2 1 1
5 4 5 3 18 11 2

13 13 13

2 1 1
( ) 1 8 3 27 13 3 14 25 6

13 13 13

1 1 2
17 5 6 15 3 1 7 3

13 13 13

A

     

      

     

 
       

 
        

 
 
         
 

 

with a determinant of   212
( ) ( 2 )

13
Det s     

The dual system is 

     

     

     

2 2 2

2 2 2

2 2 2

2 1 1
5 4 1 5 3 1 18 11 2

13 13 13

2 1 1
( ) 1 8 3 27 13 3 14 25 6

13 13 13

1 1 2
17 5 6 15 3 1 7 3

13 13 13

A

     

      

     

 
       

 
        

 
 
         
 

 

with a determinant of 
4 212

( ) ( 1 2 )
13

Det          and 

0

( )

3

1 0 0

( ) 0 0

0 0

A
S


 



 
 


 
 
 

 

We can also check that 
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12

2 1 1 1 1 1 0 1

1 1

0 0

0 0 ; 2

0 0

C
A C J AC J A C rank

C J

 
  

     
  

 

 

2

0 1 2

2

0 0 0 0

0 0 0 0 ; 4

0 0 0 0

C

A C J AC J A C rank C J

C J
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CONCLUSIONS 

Overall, we have studied the behavior of discrete-time AR-representations, the solution 

space of such a system and the construction of a square matrix A(σ) such that the corresponding 

AR-representation satisfies a given behavior.  More specifically, we managed to give a theorem 

connecting the backward behavior of a system to the forward beahvior of it’s dual representation 

corresponding to the f.e.d. at zero. In addition, we provided two methods of constructing a 

system with a given forward and backward behavior. The first algorithm was implemented to 

mathematica.  

In the algorithms presented by Gohberg, it is assumed that the whole spectral information 

will be given. We have seen that even when this is not the case, our algorithms still function, but 

with complications (e.g. extra behavior). 

These methods where studied for square systems of difference equations, yet it is possible 

that these results can be implemented to the case of non-square systems. 
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